Biofilm-forming bacterial infections result in clinical failure, recurring infections, and high health care costs. The antibiotic concentrations needed to eradicate biofilm require further research. We aimed to model an prosthetic joint infection (PJI) to elucidate the activity of traditional systemic concentrations versus supratherapeutic concentrations to eradicate a Staphylococcus epidermidis biofilm PJI. We evaluated S. epidermidis high-biofilm-forming (ATCC 35984) and low-biofilm-forming (ATCC 12228) isolates in an pharmacodynamic biofilm reactor model with chromium cobalt coupons to simulate prosthetic joint infection. Vancomycin, daptomycin, levofloxacin, and minocycline were used alone and combined with rifampin to evaluate the effect of biofilm eradication. We simulated three exposures: (i) humanized systemic dosing alone, (ii) supratherapeutic doses (1,000× MIC), and (iii) and dosing in combination with rifampin. Resistance development was monitored throughout the study. Simulated humanized systemic doses of a lipoglycopeptide (daptomycin), a fluoroquinolone (levofloxacin), a tetracycline (minocycline), and a glycopeptide (vancomycin) alone failed to eradicate a formed S. epidermidis biofilm. Supratherapeutic doses of vancomycin (2,000 μg/mL) and minocycline (15 μg/mL) with or without rifampin (15 μg/mL) failed to eradicate biofilms. However, a levofloxacin supratherapeutic dose (125 μg/mL) with rifampin eradicated the high-biofilm-producing isolate by 48 h. Interestingly, supratherapeutic-dose exposures of daptomycin (500 μg/mL) alone eradicated high- and low-biofilm-forming isolates in established biofilms. The concentrations needed to eradicate biofilms on foreign materials are not obtained with systemic dosing regimens. The failure of systemic dosing regimens to eradicate biofilms validates clinical findings with recurring infections. The addition of rifampin to supratherapeutic dosing regimens does not result in synergy. Supratherapeutic daptomycin dosing may be effective at the site of action to eradicate biofilms. Further studies are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10269123PMC
http://dx.doi.org/10.1128/aac.00108-23DOI Listing

Publication Analysis

Top Keywords

eradicate biofilms
16
systemic dosing
12
dosing regimens
12
staphylococcus epidermidis
8
versus supratherapeutic
8
supratherapeutic concentrations
8
recurring infections
8
concentrations needed
8
needed eradicate
8
prosthetic joint
8

Similar Publications

Antibiotic-free responsive biomaterials for specific and targeted Helicobacter pylori eradication.

J Control Release

January 2025

Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China; Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, China. Electronic address:

Gastric cancer is highly correlated with Helicobacter pylori (H. pylori) infection. Approximately 50 % of the population worldwide is infected with H.

View Article and Find Full Text PDF

We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).

View Article and Find Full Text PDF

Oral candidiasis, predominantly caused by , presents significant challenges in treatment due to increasing antifungal resistance and biofilm formation. Antimicrobial photodynamic therapy (aPDT) using natural photosensitizers like riboflavin and hypericin offers a potential alternative to conventional antifungal therapies. : A systematic review was conducted to evaluate the efficacy of riboflavin- and hypericin-mediated aPDT in reducing Candida infections.

View Article and Find Full Text PDF

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention.

Life (Basel)

January 2025

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!