A metal-insulator-semiconductor (MIS) structure is an attractive photoelectrode-catalyst architecture for promoting photoelectrochemical reactions, such as the formation of H by proton reduction. The metal catalyzes the generation of H using electrons generated by photon absorption and charge separation in the semiconductor. The insulator layer between the metal and the semiconductor protects the latter element from photo-corrosion and, also, significantly impacts the photovoltage at the metal surface. Understanding how the insulator layer determines the photovoltage and what properties lead to high photovoltages is critical to the development of MIS structures for solar-to-chemical energy conversion. Herein, we present a continuum model for charge-carrier transport from the semiconductor to the metal with an emphasis on mechanisms of charge transport across the insulator. The polarization curves and photovoltages predicted by this model for a Pt/HfO/p-Si MIS structure at different HfO thicknesses agree well with experimentally measured data. The simulations reveal how insulator properties (i.e., thickness and band structure) affect band bending near the semiconductor/insulator interface and how tuning them can lead to operation closer to the maximally attainable photovoltage, the flat-band potential. This phenomenon is understood by considering the change in tunneling resistance with insulator properties. The model shows that the best MIS performance is attained with highly symmetric semiconductor/insulator band offsets (e.g., BeO, MgO, SiO, HfO, or ZrO deposited on Si) and a low to moderate insulator thickness (e.g., between 0.8 and 1.5 nm). Beyond 1.5 nm, the density of filled interfacial trap sites is high and significantly limits the photovoltage and the solar-to-chemical conversion rate. These conclusions are true for photocathodes and photoanodes. This understanding provides critical insight into the phenomena enhancing and limiting photoelectrode performance and how this phenomenon is influenced by insulator properties. The study gives guidance toward the development of next-generation insulators for MIS structures that achieve high performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c21114 | DOI Listing |
Macromol Rapid Commun
January 2025
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, China.
The demand for insulating materials with superior dielectric properties has increased. Among these materials, polymers containing cyclic structure including cyclic olefin copolymer (COC) and cyclic olefin polymer (COP) stand out because of their excellent dielectric properties originating from the pure hydrocarbon structure. Introducing fluorine into polymers is one efficient strategy for optimizing the dielectric and the related important properties.
View Article and Find Full Text PDFACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.
View Article and Find Full Text PDFNanotechnology
January 2025
Radiophysics, Tomsk State University, Lenin, 36, Tomsk, Tomsk region, 634050, RUSSIAN FEDERATION.
Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, Institut Pierre-Simon Laplace, Université Paris Sciences et Lettres, Paris 75005, France.
The insulative properties of soil organic carbon (SOC) and surface organic layers (moss, lichens, litter) regulate surface-atmosphere energy exchanges in the Arctic through a coupling with soil temperatures. However, a physical description of this process is lacking in many climate models, potentially biasing their high-latitude climate predictions. Using a coupled surface-atmosphere model, we identified a strong feedback loop between soil insulation, surface air temperature, and snowfall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!