Purpose: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.3-ppm resonances of lactate and threonine.
Methods: Two 45.3-ms rectangular E180 pulses, which had negligible effects 0.15-ppm away from the carrier frequency, were implemented in a MEGA-PRESS sequence with TE 139 ms. Three acquisitions were designed to selectively edit lactate and threonine, in which the E180 pulses were tuned to 4.1 ppm, 4.25 ppm, and a frequency far off resonance. Editing performance was validated with numerical analyses and acquisitions from phantoms. The narrow-band E180 MEGA and another MEGA-PRESS sequence with broad-band E180 pulses were evaluated in six healthy subjects.
Results: The 45.3-ms E180 MEGA offered a difference-edited lactate signal with lower intensity and reduced contamination from threonine compared to the broad-band E180 MEGA. The 45.3 ms E180 pulse had MEGA editing effects over a frequency range larger than seen in the singlet-resonance inversion profile. Lactate and threonine in healthy brain were both estimated to be 0.4 ± 0.1 mM, with reference to N-acetylaspartate at 12 mM.
Conclusion: Narrow-band E180 MEGA editing minimizes threonine contamination of lactate spectra and may improve the ability to detect modest changes in lactate levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10901256 | PMC |
http://dx.doi.org/10.1002/mrm.29693 | DOI Listing |
Magn Reson Med
September 2023
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Purpose: The need to detect and quantify brain lactate accurately by MRS has stimulated the development of editing sequences based on J coupling effects. In J-difference editing of lactate, threonine can be co-edited and it contaminates lactate estimates due to the spectral proximity of the coupling partners of their methyl protons. We therefore implemented narrow-band editing 180° pulses (E180) in MEGA-PRESS acquisitions to resolve separately the 1.
View Article and Find Full Text PDFMagn Reson Med
March 2022
Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Purpose: J-Difference editing (MEGA) provides an effective spectroscopic means of selectively measuring low-concentration metabolites having weakly coupled spins. The fractional inphase and antiphase coherences are determined by the radiofrequency (RF) pulses and inter-RF pulse intervals of the sequence. We examined the timings of the spectrally selective editing 180° pulses (E180) in MEGA-PRESS to maximize the edited signal amplitude in lactate at 3T.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!