A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Downregulation of FKBP5 Promotes Atrial Arrhythmogenesis. | LitMetric

Background: Atrial fibrillation (AF), the most common arrhythmia, is associated with the downregulation of (encoding FKBP5 [FK506 binding protein 5]). However, the function of FKBP5 in the heart remains unknown. Here, we elucidate the consequences of cardiomyocyte-restricted loss of FKBP5 on cardiac function and AF development and study the underlying mechanisms.

Methods: Right atrial samples from patients with AF were used to assess the protein levels of FKBP5. A cardiomyocyte-specific FKBP5 knockdown mouse model was established by crossbreeding mice with mice. Cardiac function and AF inducibility were assessed by echocardiography and programmed intracardiac stimulation. Histology, optical mapping, cellular electrophysiology, and biochemistry were employed to elucidate the proarrhythmic mechanisms due to loss of cardiomyocyte FKBP5.

Results: FKBP5 protein levels were lower in the atrial lysates of patients with paroxysmal AF or long-lasting persistent (chronic) AF. Cardiomyocyte-specific knockdown mice exhibited increased AF inducibility and duration compared with control mice. Enhanced AF susceptibility in cardiomyocyte-specific knockdown mice was associated with the development of action potential alternans and spontaneous Ca waves, and increased protein levels and activity of the NCX1 (Na/Ca-exchanger 1), mimicking the cellular phenotype of chronic AF patients. FKBP5-deficiency enhanced transcription of (encoding NCX1) via transcription factor hypoxia-inducible factor 1α. In vitro studies revealed that FKBP5 negatively modulated the protein levels of hypoxia-inducible factor 1α by competitively interacting with heat-shock protein 90. Injections of the heat-shock protein 90 inhibitor 17-AAG normalized protein levels of hypoxia-inducible factor 1α and NCX1 and reduced AF susceptibility in cardiomyocyte-specific knockdown mice. Furthermore, the atrial cardiomyocyte-selective knockdown of FKBP5 was sufficient to enhance AF arrhythmogenesis.

Conclusions: This is the first study to demonstrate a role for the FKBP5-deficiency in atrial arrhythmogenesis and to establish FKBP5 as a negative regulator of hypoxia-inducible factor 1α in cardiomyocytes. Our results identify a potential molecular mechanism for the proarrhythmic NCX1 upregulation in chronic AF patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330339PMC
http://dx.doi.org/10.1161/CIRCRESAHA.122.322213DOI Listing

Publication Analysis

Top Keywords

protein levels
20
hypoxia-inducible factor
16
factor 1α
16
cardiomyocyte-specific knockdown
12
knockdown mice
12
fkbp5
9
atrial arrhythmogenesis
8
protein
8
cardiac function
8
susceptibility cardiomyocyte-specific
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!