In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)], X-dia-2-Cd, HImibz or 2 = 4-((4-(1-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from ,-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-β, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-β phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and PXRD studies at 1 bar of CO, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153660 | PMC |
http://dx.doi.org/10.1039/d3ta01574b | DOI Listing |
Nat Commun
January 2025
Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
The economic feasibility of low-carbon ammonia production pathways, such as steam methane reforming with carbon capture and storage, biomass gasification, and electrolysis, is assessed under various policy frameworks, including subsidies, carbon pricing, and renewable hydrogen regulations. Here, we show that employing a stochastic techno-economic analysis at the plant level and a net present value approach under the US Inflation Reduction Act reveals that carbon capture and biomass pathways demonstrate strong economic potential due to cost-effectiveness and minimal public support needs. Conversely, the electrolytic pathway faces significant economic challenges due to higher costs and lower efficiency.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China.
Solar-driven interfacial evaporation technology is regarded as a promising strategy for global freshwater shortage owing to its green and sustainable desalination process. Graphene aerogel (GA) is widely utilized in the design of solar-driven steam generation systems due to its excellent photothermal conversion efficiency and broad spectral absorption. Given the significant impact of hydrophilicity and thermal insulation on the performance of evaporators, nitrogen doping in the graphene structure not only effectively enhances its wettability but also allows for moderate tuning of its thermal conductivity, thereby optimizing the overall performance of the evaporator.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 Iran. Electronic address:
Multifunctional dual-layer wound dressings hold significant promise for comprehensive full-thickness wound management by closely mimicking the native skin structure and features. Herein, we employed an innovative approach utilizing electrospinning techniques to develop a dual-layer dressing comprising a microfibrous Ecoflex®-Vanillin (Ex-Vnil) top layer (TL) and a nanofibrous Soluplus®-Insulin-like growth factor-1 (Sol-IGF1) bottom layer (BL). The tensile properties of dual-layer wound dressings were within the standard range for use in skin tissue regeneration.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise Street. 46, 51003 Tartu, Estonia. Electronic address:
Despite only covering ~3 % of the land mass, peatlands store more carbon (C) per unit area than any other ecosystem. This is due to the discrepancy between C fixed by the plants (Gross primary productivity (GPP)) and decomposition. However, this C is vulnerable to frequent, severe droughts and changes in the peatland microclimate.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey.
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (G).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!