Ischemic stroke (IS) is the second leading cause of death and disability in the world. Pyroptosis, a form of programmed cell death initiated by caspases, participates in the occurrence and development of IS. Because it can increase cell membrane permeability, mediate the release of inflammatory factors, and aggravate inflammation, inhibiting this process can significantly reduce the pathological injury of IS. The nucleotide binding oligomerization domain-like receptor family pyrin domain protein 3 (NLRP3) is a multiprotein complex whose activation is the core link of pyroptosis. In recent years, studies have reported that traditional Chinese medicine (TCM) could regulate pyroptosis mediated by NLRP3 inflammasome through multi-channel and multi-target networks and thus exert the effect against IS. This article reviews 107 papers published in recent years in PubMed, Chinese National Knowledge Infrastructure (CNKI), and WanFang Data in recent years. It has found that the activation factors of NLRP3 inflammasome include ROS, mitochondrial dysfunction, K, Ca, lysosome rupture, and trans-Golgi breakdown. TLR4/NF-κB/NLRP3, ROS/TXNIP/NLRP3, AMPK/Nrf2/NLRP3, DRP1/NLRP3, TAK1/JNK/NLRP3 signaling pathways regulate the initiation and assembly of the NLRP3 inflammasome, subsequently induce pyroptosis, affecting the occurrence and development of IS. TCM can affect the above signaling pathways and regulate the pyroptosis mediated by NLRP3 inflammasome, so as to play a protective role against IS, which provides a new entry point for discussing the pathological mechanism of IS and a theoretical basis for developing TCM treasure house.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160381 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1151196 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, China. Electronic address:
Mushroom poisoning, predominantly caused by α-amanitin, is a critical food safety concern in worldwide, with severe cases leading to hepatotoxicity and fatalities. This study delves into the hepatotoxic effects of α-amanitin, focusing on the NLRP3 inflammasome and PPAR-γ's regulatory role in inflammation. In vitro studies with L-02 cells showed that α-amanitin reduces cell viability and triggers NLRP3 inflammasome activation, increasing NF-κB phosphorylation and pro-inflammatory cytokines IL-18 and IL-1β.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
Neuroinflammation is a key factor in the progression of neurodegenerative diseases, driven by the dysregulation of molecular pathways and activation of the brain's immune system, resulting in the release of pro-inflammatory and oxidative molecules. This chronic inflammation is exacerbated by peripheral leukocyte infiltration into the central nervous system. Medicinal plants, with their historical use in traditional medicine, have emerged as promising candidates to mitigate neuroinflammation and offer a sustainable alternative for addressing neurodegenerative conditions in a green healthcare framework.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!