Unlabelled: The World Health Organization estimates that more than 23 million individuals worldwide suffer from rheumatoid arthritis (RA), a chronic systemic autoimmune disease and experts predict that the number of RA patients may double by 2030. A substantial portion of RA patients do not respond effectively to the treatment that are already available therefore there is an urgent need of innovative new drugs. Over the past several years, Peptidyl Arginine Deiminase Type 4 (PAD4) receptors have become potential therapeutic targets for the treatment of RA. The main objective of the present study is to identify potential PAD4 inhibitors from edible fruits . Structure based virtual screening (VS) of 60 compounds from were performed to identify PAD4 inhibitors. The virtual screening of compounds resulted ten hits having XP-Glide score greater than the co-ligand (XPGS: - 8.341 kcal/mol). Three hits NF_15, NF_34, and NF_35 exhibited admirable MM-GBSA dG binding energy - 52.577, - 46.777, and - 60.711 kcal/mol, respectively. These three compounds were chosen for 100 ns molecular dynamics (MD) simulations in order to evaluate the stability and interactions. The protein-ligand complex with the highest level of stability was revealed to be NF_35. Therefore, fruits may be beneficial in the treatment and prevention of rheumatoid arthritis since it contains potential hits

Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-023-00147-3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154455PMC
http://dx.doi.org/10.1007/s40203-023-00147-3DOI Listing

Publication Analysis

Top Keywords

peptidyl arginine
8
arginine deiminase
8
deiminase type
8
rheumatoid arthritis
8
pad4 inhibitors
8
virtual screening
8
screening compounds
8
potential
4
potential peptidyl
4
type inhibitors
4

Similar Publications

Insights into the complexities of Citrullination: From immune regulation to autoimmune disease.

Autoimmun Rev

December 2024

Department of Clinical Immunology of Xijing Hospital and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. Electronic address:

Citrullination, a post-translational modification that changes arginine to citrulline in proteins, is vital for immune response modulation and cell signaling. Catalyzed by peptidyl arginine deiminases (PADs), citrullination is linked to various diseases, particularly autoimmune disorders like rheumatoid arthritis (RA). Citrullinated proteins can trigger the production of anti-citrullinated protein antibodies (ACPAs), included in RA classification criteria.

View Article and Find Full Text PDF

Protein citrullination (PC) is a posttranslational modification (PTM) that converts a peptidyl arginine into a peptidyl citrulline. Aberrant PC is a hallmark of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease, prion disease, and multiple sclerosis. Common among these diseases is a dramatic increase of PC in reactive astrocytes.

View Article and Find Full Text PDF

Covalent drugs can achieve high potency with long dosing intervals. However, concerns remain about side-effects associated with off-target reactivity. Combining macrocyclic peptides with covalent warheads provides a solution to minimise off-target reactivity: the peptide enables highly specific target binding, positioning a weakly reactive warhead proximal to a suitable residue in the target.

View Article and Find Full Text PDF

Silencing PADI-2 induces antitumor effects by downregulating NF-κB, Nrf2/HO-1 and AKT1 in A549 lung cancer cells.

Int Immunopharmacol

December 2024

Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Advanced Clinical Biosystems Research Institute, Precision Biomarker Laboratories, Cedars Sinai Medical Center, Los Angeles, CA, USA. Electronic address:

Objective: This study aimed to investigate the tumorigenic role and regulatory pathways of peptidyl arginine deiminase 2 (PAD-2) in A549 lung cancer cells following treatment with small interfering RNA (PADI-2 siRNA) or the pharmacological pan-PAD inhibitor BB-Cl amidine.

Materials And Methods: A549 lung cancer cells were treated with PADI-2 siRNA to knock down PADI-2 expression or with BB-Cl amidine to inhibit PAD2 activity. The effects on cell proliferation, migration, invasion, and cell cycle phases were assessed.

View Article and Find Full Text PDF

Peptide BG From Bitter Gourd () Improves Adjuvant-Induced Arthritis by Modulating the Necroptosis/Neutrophil Extracellular Traps/Inflammation Axis and the Gut Microbiota.

Mediators Inflamm

December 2024

Clinical Medical Research Center, Inner Mongolia Bioactive Peptide Engineering Laboratory, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.

BG is a novel bioactive peptide derived from bitter gourd (), known for its anti-inflammatory and immunomodulatory properties. In the present study, our objective is to investigate the functional roles and mechanisms of BG in the context of rheumatoid arthritis (RA). A rat model of adjuvant-induced arthritis (AIA) was established by administering complete Freund's adjuvant (CFA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!