Analysis for Full-Field Photoacoustic Tomography with Variable Sound Speed.

SIAM J Imaging Sci

Department of Mathematics, Missouri State University, Springfield, Missouri, USA.

Published: January 2022

Photoacoustic tomography (PAT) is a non-invasive imaging modality that requires recovering the initial data of the wave equation from certain measurements of the solution outside the object. In the standard PAT measurement setup, the used data consist of time-dependent signals measured on an observation surface. In contrast, the measured data from the recently invented full-field detection technique provide the solution of the wave equation on a spatial domain at a single instant in time. While reconstruction using classical PAT data has been extensively studied, not much is known for the full field PAT problem. In this paper, we build mathematical foundations of the latter problem for variable sound speed and settle its uniqueness and stability. Moreover, we introduce an exact inversion method using time-reversal and study its convergence. Our results demonstrate the suitability of both the full field approach and the proposed time-reversal technique for high resolution photoacoustic imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10162777PMC
http://dx.doi.org/10.1137/21m1463409DOI Listing

Publication Analysis

Top Keywords

photoacoustic tomography
8
variable sound
8
sound speed
8
wave equation
8
full field
8
analysis full-field
4
full-field photoacoustic
4
tomography variable
4
speed photoacoustic
4
pat
4

Similar Publications

Thinning of anterolateral thigh flap is challenging. Anatomical studies have shown variations in arterial branching patterns in the subcutaneous layer, which were suspected to be the reason for the high frequency of thinning failures. We attempted to visualize subcutaneous arterial courses preoperatively and perform thinning of perforator flaps using this information appropriately.

View Article and Find Full Text PDF

Metastasis represents a stage in which the therapeutic objective changes from curing disease to prolonging survival, as detection typically occurs at advanced stages. Technologies for the early identification of disease would enable treatment at a lower disease burden and heterogeneity. Herein, we investigate the vascular dynamics within a synthetic metastatic niche as a potential marker of disease progression.

View Article and Find Full Text PDF

Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.

View Article and Find Full Text PDF

Photonic-based methods are crucial in biology and medicine due to their non-invasive nature, allowing remote measurements without affecting biological specimens. The study of diatoms using advanced photonic methods remains a relatively underexplored area, presenting significant opportunities for pioneering discoveries. This research provides a comprehensive analysis of marine diatoms, specifically Nitzschia sp.

View Article and Find Full Text PDF

Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain.

Nat Commun

December 2024

Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.

Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!