Abnormal bone metabolism and subsequence osteoporotic fractures are common complications of chronic inflammatory diseases. No effective treatment for these bone-related complications is available at present. The chronic inflammatory state in these diseases has been considered as a key factor of bone loss. Therefore, the combination of inflammation inhibition and bone loss suppression may be an important strategy for reducing bone damage associated with inflammatory diseases. Bushen Huoxue Decoction (BSHXD) is a traditional Chinese herbal compound that has demonstrated the ability to improve bone quality and increase bone density. However, the efficacy of BSHXD on inflammatory bone loss and its underlying mechanisms remain unclear. This study aimed to investigate whether BSHXD inhibits inflammatory bone loss in mice and its potential molecular mechanisms. In the present study, the effect of BSHXD on lipopolysaccharide (LPS)-induced M1 polarization of RAW264.7 macrophage and on local inflammatory bone loss model of mouse skull was determined. The results showed that after treating RAW264.7 cells with LPS for 24 h, the expression levels of IL-1β (39.42 ± 3.076 ng/L, p < 0.05), IL-6 (49.24 ± 1.766 mg/L, p < 0.05) and TNF-α (286.3 ± 27.12 ng/L, p < 0.05) were significantly increased. The addition of BSHXD decreased the expression levels of IL-1β, IL-6, and TNF-α to 31.55 ± 1.296 ng/L, 37.94 ± 0.8869 mg/L, and 196.4 ± 25.25 ng/L, respectively (p < 0.05). The results of immunofluorescence staining, Western blotting (WB) and flow cytometry indicated that the proportion of M1 macrophages in RAW264.7 cells treated with BSHXD for 24 h was significantly lower than that in the LPS group (13.36% ± 0.9829% VS 24.80% ± 4.619%, p < 0.05). The evidence from experiments showed that the immunomodulatory ability of BSHXD may be associated with the activation of AMP-dependent protein kinase (AMPK) pathway in LPS-treated macrophages. In addition, the results of micro-CT, H&E staining, immunohistochemical staining and immunofluorescence staining of mouse skull further demonstrated that BSHXD treatment significantly alleviated LPS-induced local bone loss and inflammatory damage in mouse skull model. All results indicated that BSHXD significantly inhibited inflammatory factors release and M1 polarization of macrophage through AMPK signaling pathway. Therefore, BSHXD may be a promising drug for the treatment of inflammatory bone loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160506PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e15583DOI Listing

Publication Analysis

Top Keywords

bone loss
24
inflammatory bone
16
bone
10
complications chronic
8
chronic inflammatory
8
inflammatory diseases
8
inflammatory
7
loss
6
bushenhuoxue decoction
4
decoction suppresses
4

Similar Publications

One hundred thirty-four germ line PU.1 variants and the agammaglobulinemic patients carrying them.

Blood

January 2025

Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.

Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.

View Article and Find Full Text PDF

Case: In this article, we present 2 cases of neglected patellar tendon rupture. One was treated using an Achilles tendon allograft, and the other with a patellar tendon-bone allograft. Both methods allowed for early range of motion and resulted in good functional outcomes with a 1-year follow-up period.

View Article and Find Full Text PDF

This systematic review and meta-analysis aimed to compare the effect of photobiomodulation (PBM) therapy on implant stability and crestal bone loss placed in healed sites. The present systematic review and meta-analysis were conducted according to PRISMA (The Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Two investigators carried out the electronic search of Pubmed, Google Scholar, and Ebscohost for published literature from 2012 till March 2024.

View Article and Find Full Text PDF

Background: Complicated wrist amputation caused by severe trauma poses a real challenge for orthopedic and hand surgeons. This study aimed to evaluate a procedure of ulnoradial-metacarpal reconstruction as a rescue option in this challenging situation.

Methods: In total, 12 patients with complicated wrist amputation induced by serious injury were selected from 2015 to 2020 and followed up for 1∼6 years at a level 1 trauma center.

View Article and Find Full Text PDF

Hereditary tyrosinemia type 1 (HT-1) is an inborn error of metabolism caused by a defect in tyrosine (tyr) degradation. This defect results in the accumulation of succinylacetone (SA), causing liver failure with a high risk of hepatocarcinoma and kidney injury, leading in turn to Fanconi syndrome with urine loss of phosphate and secondary hypophosphatemic rickets (HR). HT-1 diagnosis is usually made in infants with acute or chronic liver failure or by neonatal screening programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!