Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the outbreak of COVID-19, people's reliance on social media for pandemic-related information exchange, daily communications, and online professional interactions increased because of self-isolation and lockdown implementation. Most of the published research addresses the performance of nonpharmaceutical interventions (NPIs) and measures on the issues impacted by COVID-19, such as health, education, and public safety; however, not much is known about the interplay between social media use and travel behaviors. This study aims to determine the effect of social media on human mobility before and after the COVID-19 outbreak, and its impact on personal vehicle and public transit use in New York City (NYC). Apple mobility trends and Twitter data are used as two data sources. The results indicate that Twitter volume and mobility trend correlations are negative for both driving and transit categories in general, especially at the beginning of the COVID-19 outbreak in NYC. A significant time lag (13 days) between the online communication rise and mobility drop can be observed, thereby providing evidence of social networks taking quicker reactions to the pandemic than the transportation system. In addition, social media and government policies had different impacts on vehicular traffic and public transit ridership during the pandemic with varied performance. This study provides insights on the complex influence of both anti-pandemic measures and user-generated content, namely social media, on people's travel decisions during pandemics. The empirical evidence can help decision-makers formulate timely emergency responses, prepare targeted traffic intervention policies, and conduct risk management in similar outbreaks in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10149522 | PMC |
http://dx.doi.org/10.1177/03611981211033857 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!