Object: Hospital sewage have been associated with incorporation of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) into microbes, which is considered as a key indicator for the spread of antimicrobial resistance (AMR). The compositions of dental waste water (DWW) contain heavy metals, the evolution of AMR and its effects on the water environment in the context of heavy metal environment have not been seriously investigated. Thus, our major aims were to elucidate the evolution of AMR in DWW.

Methods: DWW samples were collected from a major dental department. The presence of microbial communities, ARGs, and MGEs in untreated and treated (by filter membrane and ozone) samples were analyzed using metagenomics and bioinformatic methods.

Results: DWW-associated resistomes included 1,208 types of ARGs, belonging to 29 antibiotic types/subtypes. The most abundant types/subtypes were ARGs of multidrug resistance and of antibiotics that were frequently used in the clinical practice. , , , were the main bacteria which hosted these ARGs. Mobilomes in DWW consisted of 93 MGE subtypes which belonged to 8 MGE types. Transposases were the most frequently detected MGEs which formed networks of communications. For example, ISCrsp1 and tnpA.5/4/11 were the main transposases located in the central hubs of a network. These significant associations between ARGs and MGEs revealed the strong potential of ARGs transmission towards development of antimicrobial-resistant (AMR) bacteria. On the other hand, treatment of DWW using membranes and ozone was only effective in removing minor species of bacteria and types of ARGs and MGEs.

Conclusion: DWW contained abundant ARGs, and MGEs, which contributed to the occurrence and spread of AMR bacteria. Consequently, DWW would seriously increase environmental health concerns which may be different but have been well-documented from hospital waste waters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157219PMC
http://dx.doi.org/10.3389/fmicb.2023.1106157DOI Listing

Publication Analysis

Top Keywords

args mges
12
args
9
dental waste
8
waste water
8
context heavy
8
heavy metal
8
metal environment
8
evolution amr
8
types args
8
amr bacteria
8

Similar Publications

Impact of different continuous fertilizations on the antibiotic resistome associated with a subtropical triple-cropping system over one decade.

Environ Pollut

December 2024

Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation/Guangdong Engineering Research Center of Soil Microbes and Cultivated Land Conservation, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Academy of Agricultural Sciences, Guangzhou, China. Electronic address:

The prevalence of antibiotic resistance genes (ARGs) in agricultural soils has garnered significant attention. However, the long-term impacts of various nitroge (N)-substitution fertilization regimes on the distribution of soil ARGs and their dominant drivers in a subtropical triple-cropping system remain largely unexplored. This study employed a metagenomic approach to analyze soil ARGs, microbial communities, mobile genetic elements (MGEs), and viruses from a maize-maize-cabbage rotation field experiment with five different fertilization regimes.

View Article and Find Full Text PDF

Comparative efficacy of anaerobic digestion systems in removing antimicrobial resistance genes from swine wastewater.

J Hazard Mater

December 2024

Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. Electronic address:

Swine farm wastewater is a major reservoir of antimicrobial resistance genes (ARGs). Anaerobic digestion (AD), widely implemented in farms, has been extensively studied for ARG removal. However, a comparative study on ARG removal efficiency across the four principal AD systems - up-flow anaerobic sludge blanket (UASB), continuous stirred tank reactor (CSTR), buried biogas digester (BBD), and septic tank (SPT) - is lacking.

View Article and Find Full Text PDF

The broader soil bacterial community responses at ecotoxicologically relevant levels of nano ZnO (nZnO) focussing on co-selection of antibiotic resistance (AR) were investigated. nZnO imposed a stronger influence than the bulk counterpart (bZnO) on antibiotic resistance genes (ARGs) with multidrug resistance (MDR) systems being predominant (63 % of total ARGs). Proliferation of biomarker ARGs especially for last resort antibiotic like vancomycin was observed and Streptomyces hosted multiple ARGs.

View Article and Find Full Text PDF

Field-based evidence for the prevalence of soil antibiotic resistomes under long-term antibiotic-free fertilization.

Environ Int

December 2024

Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States.

Growing evidence suggests that the use of manure containing residual antibiotics universally leads to an increase in soil antibiotic resistance genes (ARGs). However, there is limited understanding of the influence of long-term antibiotic-free fertilization and the differences between antibiotic-free manure and chemical fertilizer on soil ARGs. This study aimed to quantify the assembly patterns of the antibiotic resistome by in situ probing bacterial community and environmental variations in field soils that have been subjected to long-term exposure to chemical fertilizer and/or manure from animals without antibiotic amendments.

View Article and Find Full Text PDF

Elevated CO Increased Antibiotic Resistomes in Seed Endophytes: Evidence from a Free-Air CO Enrichment (FACE) Experiment.

Environ Sci Technol

December 2024

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Climate warming affects antibiotic resistance genes (ARGs) in soil and the plant microbiome, including seed endophytes. Seeds act as vectors for ARG dissemination in the soil-plant system, but the impact of elevated CO on seed resistomes remains poorly understood. Here, a free-air CO enrichment system was used to examine the impact of elevated CO on seed-associated ARGs and seed endophytic bacteria and fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!