Introduction: Challenges of diverse origin in childhood can alter the growth and development of the central nervous system, affecting structures and functions. As a consequence of the damage suffered during the perinatal period, long periods of dysfunctionality may occur, such as regulatory disorders, which may result in remaining in a process of low-grade inflammation. We previously found that perinatal risks and neurological signs are associated with long-term changes in circulating concentrations of molecules of the inflammatory process, findings that are consistent with the postulate that long periods of dysfunction may condition long-lasting low-grade inflammation or parainflammation. The aim of this study was to assess whether different expressions of neurological disorders show variations in their inflammatory molecule profiles or whether there is a common pattern.
Methods: We included screening for (a) caregiver-perceived risk detection of regulatory disturbances, using the DeGangi instrument; (b) dysautonomia or asymmetries, through neurodevelopmental assessments; (c) cognitive developmental disturbances (using the Bailey instrument). We assessed protein molecules on a multiplex system, and lipid molecules by ELISA.
Results: We found a similar, although not identical, pattern of cytokine profiles with the presence of risk of regulatory disturbances, dysautonomia and asymmetries; but an opposite inflammatory profile was associated with cognitive impairment.
Discussion: Our results suggest that there are diverse, probably limited, molecular footprints associated with impaired function, and that these footprints may depend on the response requirements necessary to adjust to the altered internal environment. Here we propose a theoretical model that suggests possible scenarios for inflammatory outcomes associated with chronic challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157392 | PMC |
http://dx.doi.org/10.3389/fped.2023.1132175 | DOI Listing |
Mini Rev Med Chem
January 2025
Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University of Rome, 00161, Rome, Italy.
Currently, the synthesis of bioactive sulfonamides using amino acid as a starting reagent has become an area of research interest in organic chemistry. Over the years, an amine-sulfonyl chloride reaction has been adopted as a common step in traditional sulfonamide synthetic methods. However, recent developments have shown amino acids to be better precursors than amines in the synthesis of sulfonamides.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.
View Article and Find Full Text PDFBehav Neurol
January 2025
Department of Animal Biology and Physiology, University of Yaoundé I, Yaoundé, Cameroon.
Amnesia is a memory disorder marked by the inability to recall or acquire information. Hence, drugs that also target the neurogenesis process constitute a hope to discover a cure against memory disorders. This study is aimed at evaluating the antiamnesic and neurotrophic effects of the aqueous extract of () on in vivo and in vitro models of excitotoxicity.
View Article and Find Full Text PDFCureus
January 2025
Anesthesiology, Universidad Abierta Interamericana, Buenos Aires, ARG.
The differentiation between benign and malignant brain lesions remains a fundamental challenge in modern neuroimaging. This case highlights a rare presentation of ectatic Virchow-Robin spaces (VRS), which mimicked tumefactive brain lesions and required a comprehensive diagnostic evaluation to exclude neoplastic, infectious, and inflammatory processes. A 37-year-old female presented with progressive headache, cognitive impairment, and facial pain.
View Article and Find Full Text PDFMater Today Bio
February 2025
Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France.
Human amniotic membrane (hAM) has been extensively used for several decades as a bioactive scaffold for regenerative medicine. In its cryopreserved form-one of the main storage formats-the presence of viable cells has often been questioned. Furthermore, there is little published evidence of the role of endogenous amniotic cells from cryopreserved hAM in tissue repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!