Introduction: Research in the field of computational neuroscience relies on highly capable simulation platforms. With real-time capabilities surpassed for established models like the cortical microcircuit, it is time to conceive next-generation systems: neuroscience simulators providing significant acceleration, even for larger networks with natural density, biologically plausible multi-compartment models and the modeling of long-term and structural plasticity.
Methods: Stressing the need for agility to adapt to new concepts or findings in the domain of neuroscience, we have developed the neuroAIx-Framework consisting of an empirical modeling tool, a virtual prototype, and a cluster of FPGA boards. This framework is designed to support and accelerate the continuous development of such platforms driven by new insights in neuroscience.
Results: Based on design space explorations using this framework, we devised and realized an FPGA cluster consisting of 35 NetFPGA SUME boards.
Discussion: This system functions as an evaluation platform for our framework. At the same time, it resulted in a fully deterministic neuroscience simulation system surpassing the state of the art in both performance and energy efficiency. It is capable of simulating the microcircuit with 20× acceleration compared to biological real-time and achieves an energy efficiency of 48nJ per synaptic event.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10156974 | PMC |
http://dx.doi.org/10.3389/fncom.2023.1144143 | DOI Listing |
Neuroimage
January 2025
School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran. Electronic address:
Object recognition under challenging real-world conditions, including partial occlusion, remains an enduring focus of investigation in cognitive visual neuroscience. This study addresses the insufficiently elucidated neural mechanisms and temporal dynamics involved in this complex process, concentrating on the persistent challenge of recognizing objects obscured by occlusion. Through the analysis of human EEG data, we decode feedback characteristics within frontotemporal networks, uncovering intricate neural mechanisms during occlusion coding, with a specific emphasis on processing complex stimuli such as occluded faces.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
The design of organic-peptide hybrids has the potential to combine our vast knowledge of protein design with small molecule engineering to create hybrid structures with complex functions. Here, we describe the computational design of a photoswitchable Ca-binding organic-peptide hybrid. The designed molecule, designated Ca-binding switch (CaBS), combines an EF-hand motif from classical Ca-binding proteins such as calmodulin with a photoswitchable group that can be reversibly isomerized between a spiropyran (SP) and merocyanine (MC) state in response to different wavelengths of light.
View Article and Find Full Text PDFPLoS One
January 2025
School of Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America.
We aimed to test whether hearing speech in phonetic categories (as opposed to a continuous/gradient fashion) affords benefits to "cocktail party" speech perception. We measured speech perception performance (recognition, localization, and source monitoring) in a simulated 3D cocktail party environment. We manipulated task difficulty by varying the number of additional maskers presented at other spatial locations in the horizontal soundfield (1-4 talkers) and via forward vs.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Transcranial ultrasound stimulation (TUS) presents challenges in ultrasound wave transmission through the skull, affecting study outcomes due to aberration and attenuation. While planning strategies incorporating 3D computed tomography (CT) scans help mitigate these issues, they expose participants to radiation, which can raise ethical concerns. A solution involves generating skull masks from participants' anatomical magnetic resonance imaging (MRI).
View Article and Find Full Text PDFNeurol Res Pract
January 2025
Institute of Clinical Epidemiology and Biometry, Julius-Maximilians-Universität Würzburg (JMU), Haus D7, Josef-Schneider-Straße 2, 97080, Würzburg, Germany.
Background: Comprehensive clinical data regarding factors influencing the individual disease course of patients with movement disorders treated with deep brain stimulation might help to better understand disease progression and to develop individualized treatment approaches.
Methods: The clinical core data set was developed by a multidisciplinary working group within the German transregional collaborative research network ReTune. The development followed standardized methodology comprising review of available evidence, a consensus process and performance of the first phase of the study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!