The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154674 | PMC |
http://dx.doi.org/10.3389/fcell.2023.1153473 | DOI Listing |
J Integr Neurosci
January 2025
Laboratory for the Study of Tactile Communication, Pushkin State Russian Language Institute, 117485 Moscow, Russia.
Background: The significance of tactile stimulation in human social development and personal interaction is well documented; however, the underlying cerebral processes remain under-researched. This study employed functional magnetic resonance imaging (fMRI) to investigate the neural correlates of social touch processing, with a particular focus on the functional connectivity associated with the aftereffects of touch.
Methods: A total of 27 experimental subjects were recruited for the study, all of whom underwent a 5-minute calf and foot massage prior to undergoing resting-state fMRI.
Sensors (Basel)
January 2025
Curtin School of Allied Health, Curtin University, Perth 6102, Australia.
In hospitals, timely interventions can prevent avoidable clinical deterioration. Early recognition of deterioration is vital to stopping further decline. Measuring the way patients position themselves in bed and change their positions may signal when further assessment is necessary.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of P.E. and Sports, Beijing Normal University, Beijing 100875, China.
Objective: This study aimed to investigate the effects of a 12-week self-designed exercise game intervention on the kinematic and kinetic data of the supporting leg in preschool children during the single-leg jump.
Methods: Thirty 5- to 6-year-old preschool children were randomly divided into an experimental group (EG) and a control group (CG). The BTS SMART DX motion capture analysis system was used to collect single-leg jump data before the intervention.
Sensors (Basel)
January 2025
2Ai, School of Technology, IPCA, 4750-810 Barcelos, Portugal.
Virtual reality (VR) has gained significant attention in various fields including healthcare and industrial applications. Within healthcare, an interesting application of VR can be found in the field of physiotherapy. The conventional methodology for rehabilitating upper limb lesions is often perceived as tedious and uncomfortable.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing 102218, China.
(1) Background: To develop a novel capillary refill time measurement system and evaluate its reliability and reproducibility. (2) Methods: Firstly, the utilization of electromagnetic pressure technology facilitates the automatic compression and instantaneous release of the finger. Secondly, the employment of pressure sensing technology and photoelectric volumetric pulse wave analysis technology enables the dynamic monitoring of blood flow in distal tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!