Introduction: Soil fertility is a major determinant of plant-microbial interactions, thus, directly and indirectly affecting crop productivity and ecosystem functions. In this study, we analysed for the first time the effects of fertilizer addition on the cropping of purslane () with particular attention to the taxonomic and functional characteristics of their associated soil microbiota.
Methods: We tested the effects of different doses of inorganic fertilization differing in the amount of N:P:K namely IT1 (300:100:100); IT2 (300:200:100); IT3 (300:200:200); and IT4 (600:100:100) (ppm N:P:K ratio) and organic fertilization (compost tea) which reached at the end of the assay the dose of 300 ppm N.
Results And Discussion: Purslane growth and soil quality parameters and their microbial community structure, abundance of fungal functional groups and prevailing bacterial metabolic functions were monitored. The application of compost tea and inorganic fertilizers significantly increased the purslane shoot biomass, and some soil chemical properties such as pH and soil enzymatic activities related to C, N and P biogeochemical cycles. The bacterial and fungal community compositions were significantly affected by the organic and chemical fertilizers input. The majority of inorganic fertilization treatments decreased the fungal and bacterial diversity as well as some predictive bacterial functional pathways.
Conclusions: These findings suggest that the inorganic fertilization might lead to a change of microbial functioning. However, in order to get stronger evidence that supports the found pattern, longer time-frame experiments that ideally include sampling across different seasons are needed. Thus, further research is still needed to investigate the effects of fertilizations on purslane productivity under commercial field conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159062 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1159823 | DOI Listing |
Environ Monit Assess
December 2024
Environmental Science Discipline, Khulna University, Khulna, Bangladesh.
Cd-contaminated saline soil is now becoming a serious threat affecting sustainable agriculture throughout the world. In this study, organic amendments (OA) were applied to Cd-contaminated saline soils to, firstly, reduce the bioavailability of Cd in soil and, secondly, minimize Cd accumulation in red amaranth (Amaranthus gangeticus) plant. The soil was treated with 1% and 2% of cow dung (CD), vermicompost (VC), waste tea (WT), saw dust (SD), rice hull (RH), and compost.
View Article and Find Full Text PDFSci Total Environ
December 2024
Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:
The comprehensive effects of exogenous additives on microbial-driven antibiotic resistance profiles and C/N/S conversion in animal manure composting remains uncertain. This study examined whether tea branch biochar could regulate the microflora involved in antibiotic resistance and C/N/S conversion during pig and chicken manure composting. Compared with the control treatment, biochar addition prolonged the high-temperature period (>55 °C) for 1-2 days and raised the maximum temperature in chicken manure composting.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China. Electronic address:
The use of compost tea is important to improve food safety. However, the effect of compost tea on N uptake and partitioning in tomato is unclear. In this study, we measured temporal and spatial changes in nitrogen content, enzyme activities, and expression levels of nitrogen transporters genes in different organs of tomato treated with five nutrient solutions.
View Article and Find Full Text PDFBMC Plant Biol
September 2024
CREA Research Centre for Vegetable and Ornamental Crops, Via Cavalleggeri 51, Pontecagnano Faiano, 84098, Italy.
Background: To counteract soil degradation, it is important to convert conventional agricultural practices to environmentally sustainable management practices. To this end, the application of biostimulants could be considered a good strategy. Compost, produced by the composting of biodegradable organic compounds, is a source of natural biostimulants, such as humic acids, which are naturally occurring organic compounds that arise from the decomposition and transformation of organic residues, and compost tea, a compost-derived liquid formulated produced by compost water-phase extraction.
View Article and Find Full Text PDFBMC Plant Biol
September 2024
Department of Agricultural Trade and Management, Faculty of Economy and Administrative Science, Yeditepe University, Istanbul, 34755, Turkey.
In this study, the performance of a novel organic tea compost developed for the first time in the world from raw tea waste from tea processing factories and enriched with worms, beneficial microorganisms, and enzymes was tested in comparison to chemical fertilizers in tea plantations in Rize and Artvin provinces, where the most intensive tea cultivation is carried out in Turkey. In the field trials, the developed organic tea vermicompost was incorporated into the root zones of the plants in the tea plantations in amounts of 1000 (OVT1), 2000 (OVT2) and 4000 (OVT4) (kg ha). The experimental design included a control group without OVT applications and positive controls with chemical fertilizers (N: P: K 25:5:10, (CF) 1200 kg ha) commonly used by local growers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!