AI Article Synopsis

  • Traditional agricultural methods are resource-intensive but generally inefficient.
  • The introduction of plant protection UAVs has transformed agriculture, enhancing efficiency and reducing resource use.
  • This study developed a productivity model for UAVs based on their operational times, revealing that productivity increases with plot length but eventually plateaus, and comparing electric and oil-powered UAVs shows different utilization and productivity rates.

Article Abstract

Traditional agricultural production requires numerous human and material resources; however, agricultural production efficiency is low. The successful development of plant protection unmanned aerial vehicles (UAVs) has changed the operation mode of traditional agricultural production, saving human, material, and financial resources and significantly improving production efficiency. To summarize the process of improving the productivity of plant protection UAVs, this study established a productivity calculation model of UAVs based on the time composition of the UAV agricultural plant protection process, including spraying, turning, replenishment, and transfer times. The time required for the unmanned aircraft application process was counted through years of tracking the application process of eight different plant protection unmanned aircraft. Plot lengths of 100, 300, 500, 700, 1,000, 1,500, 2,000, 2,500, 3,000, and 3,500 m were established to calculate the theoretical productivity. The results showed that the productivity of different types of plant protection UAVs increased with an increase in plot length in the range of 100 to 1,500 m; however, when the plot length reached a certain value, the productivity growth rate slowed down or even decreased slightly. Simultaneously, based on the working area per 10,000 mu, the recommended plot length and the number of configured models for different models were recommended. If the plant protection UAV was distinguished by electric and oil power, the time utilization rate of electric plant protection UAVs was 72.7%, and the labor productivity was 56.4 mu/person·h. In contrast, the time utilization rate of the heavy load oil-powered plant protection unmanned aircraft was 86%, and the labor productivity was 63.5 mu/person ·h. This study can support plant protection UAV enterprises to optimize equipment efficiency, provide evaluation methods for the operation efficiency assessment of plant protection UAVs, provide a reference for the selection of plant protection UAVs, and provide a basis for field planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154536PMC
http://dx.doi.org/10.3389/fpls.2023.1168228DOI Listing

Publication Analysis

Top Keywords

plant protection
48
protection uavs
20
protection unmanned
16
unmanned aircraft
16
plant
12
protection
12
agricultural production
12
plot length
12
productivity
8
traditional agricultural
8

Similar Publications

Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

(), a perennial woody plant of the Araliaceae family, is extensive in Northeast China. Esteemed for both its medicinal and edible qualities in the Changbai Mountain region, its primary components include polysaccharides, saponins, and flavonoids. displays numerous pharmacological effects, such as cardiovascular protection, anti-tumour, anti-fatigue, and hypoglycaemic properties.

View Article and Find Full Text PDF

Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

BMC Plant Biol

December 2024

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.

Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.

View Article and Find Full Text PDF

Upregulation of ACC deaminase gene in Bacillus velezensis UTB96 improved yield and shelf Life of Agaricus bisporus.

Sci Rep

December 2024

Department of Plant Protection, College of Agriculture, University College of Agriculture & Natural Resources, University of Tehran, Tehran, Iran.

Agaricus bisporus is globally a most extensively consumed species of edible mushrooms. Ethylene secreted by A. bisporus mycelium suppress the initiation of fructification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!