Identification of SARS-CoV-2 lineages has shown to provide invaluable information regarding treatment efficacy, viral transmissibility, disease severity, and immune evasion. These benefits provide institutions with an expectation of high informational upside with little insight in regards to practicality with implementation and execution of such high complexity testing in the midst of a pandemic. This article details our institution's experience implementing and using Next Generation Sequencing (NGS) to monitor SARS-CoV-2 lineages in the northern Chicagoland area throughout the pandemic. To date, we have sequenced nearly 7,000 previously known SARS-CoV-2 positive samples from various patient populations (e.g., outpatient, inpatient, and outreach sites) to reduce bias in sampling. As a result, our hospital was guided while making crucial decisions about staffing, masking, and other infection control measures during the pandemic. While beneficial, establishing this NGS procedure was challenging, with countless considerations at every stage of assay development and validation. Reduced staffing prompted transition from a manual to automated high throughput workflow, requiring further validation, lab space, and instrumentation. Data management and IT security were additional considerations that delayed implementation and dictated our bioinformatic capabilities. Taken together, our experience highlights the obstacles and triumphs of SARS-CoV-2 sequencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157391PMC
http://dx.doi.org/10.3389/fpubh.2023.1177695DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 lineages
8
sars-cov-2
5
ngs implementation
4
implementation monitoring
4
monitoring sars-cov-2
4
sars-cov-2 variants
4
variants chicagoland
4
chicagoland institutional
4
institutional perspective
4
perspective successes
4

Similar Publications

Immune evasion of Omicron variants JN.1, KP.2, and KP.3 to the polyclonal and monoclonal antibodies from COVID-19 convalescents and vaccine recipients.

Antiviral Res

January 2025

Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:

The Omicron BA.2.86 subvariants, JN.

View Article and Find Full Text PDF

SARS-CoV-2, the virus responsible for COVID-19, has undergone significant genetic evolution since its emergence in 2019. This study examines the genomic diversity of SARS-CoV-2 in Brazil after the worst phase of the pandemic, the wider adoption of routine vaccination, and the abolishment of other non-pharmacological preventive measures from July 2022 to July 2024 using 55,951 sequences retrieved from the GISAID database. The analysis focuses on the correlation between confirmed COVID-19 cases, sequencing efforts across Brazilian states, and the distribution and evolution of viral lineages.

View Article and Find Full Text PDF

The SARS-CoV-2 infection manifests with diverse clinical manifestations, with severity potentially influenced by the viral variant. COVID-19 has also been shown to impact ocular microcirculation in some patients, but whether this effect varies by viral lineage remains unclear. This prospective study compared clinical features and ocular parameters assessed via optical coherence tomography angiography (OCTA) in patients recovering from SARS-CoV-2 infections during the dominance of two distinctive viral lineages, Alpha (B.

View Article and Find Full Text PDF

Acute respiratory infections (ARIs) are a leading cause of death in children under five globally. The seasonal trends and profiles of respiratory viruses vary by region and season. Due to limited information and the population's vulnerability, we conducted the hospital-based surveillance of respiratory viruses in Eastern Uttar Pradesh.

View Article and Find Full Text PDF

Background: Interpretations of pediatric COVID-19 severity are complicated by novel lineages and COVID-19 vaccine introduction. We estimated the risk of severe COVID-19 by SARS-CoV-2 lineage and vaccination status among hospitalized Canadian children.

Methods: Data were collected through the Canadian Paediatric Surveillance Program (April 2020-May 2021) and Canadian Immunization Monitoring Program, ACTive (June 2021-December 2022).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!