Crystals of the new organic-inorganic material (DAP-H2)[CuBr] (); (DAP = hexahydrodiazepine (CHN)) were successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermal analysis, UV-Vis-NIR diffuse reflectance spectroscopy, and magnetic measurements. X-ray investigation demonstrates that crystallizes in the monoclinic space group 2/. The supramolecular crystal structure of is guided by several types of hydrogen bonding which connect anions and cations together into a three-dimensional network. The optical band gap was determined by diffuse reflectance spectroscopy to be 1.78 eV for a direct allowed transition, implying that it is suitable for light harvesting in solar cells. The vibrational properties of this compound were studied by infrared spectroscopy, while its thermal stability was established by simultaneous TGA-DTA from ambient temperature to 600 °C. The study of the photoresponse behavior of an optoelectronic device, based on (CHN)[CuBr], has shown a power conversion efficiency (PCE) of 0.0017%, with = 0.0208 mA/cm, = 313.7 mV, and FF = 25.46. Temperature dependent magnetic susceptibility measurements in the temperature range 1.8-310 K reveal weak antiferromagnetic interactions via the two-halide superexchange pathway [2/ = -8.4(3) K].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157685 | PMC |
http://dx.doi.org/10.1021/acsomega.2c08035 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFJ Robot Surg
January 2025
Department of Pediatric Anesthesia and Intensive Care, Necker-Enfants Malades University Hospital, AP-HP Centre, Université Paris Cité, 149, Rue de Sèvres 75015, Paris, France.
Retroperitoneal robotic-assisted laparoscopic pyeloplasty (R-RALP) is the commonest urologic procedure performed in children, entailing retroperitoneal CO2 insufflation and lateral decubitus, whose effects on cardiopulmonary variables are poorly known. We, therefore, studied hemodynamic and respiratory changes due to CO2 insufflation and lateral decubitus in children undergoing R-RALP and their effects on regional tissue oxygenation. Between 1/2021 and 7/2024, children affected by ureteropelvic joint obstruction (UPJO) underwent a pyeloplasty by R-RALP at Necker Enfants Malades Hospital (Paris, France), using a standardized surgical technique and a lung-protecting anesthetic protocol aimed to prevent hypercarbia.
View Article and Find Full Text PDFBMC Chem
January 2025
Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Cairo, 11727, Egypt.
The depletion of fossil fuels and growing environmental concerns necessitate the exploration of renewable energy sources. Biodiesel, a promising alternative fuel derived from sustainable feedstock, has attracted considerable attention. This study investigates the catalytic esterification of oleic acid, a readily available fatty acid, with ethanol for biodiesel production using a novel heterogeneous catalyst, ZrO/AlO.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08854, USA; Center for Structured Organic Particulate Systems (C-SOPS), Cranbury, NJ, 08512, USA.
This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical Engineering, School of Engineering and Digital Science, Nazarbayev University, Astana 010000, Kazakhstan.
The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!