Heavy-metal pollution is a persevering environmental menace, which demands the necessity of its removal by green and ecofriendly adsorbents. To combat this problem, discarded plant biomass can be used as an efficient substitute. Herein, a comparative study has been highlighted for the removal of Pb ions using Salisbury seed coat and its activated carbon, which is prepared by a first-time-reported activating agent that is a novel and non-hazardous bioresource. The batch investigation revealed a 99.9% removal efficiency of Pb(II) by the activated carbon compared to Salisbury seed coat, which shows only an 89.5% removal efficiency at neutral pH. The adsorption mechanism is mainly a multilayered process, which involves electrostatic, van der Waals, and hydrogen bonding interactions. The adsorption equilibrium, kinetic, and thermodynamic studies were examined for the biosorbents, which revealed the adsorption process to be feasible, spontaneous, and exothermic with both physisorption and chemisorption adsorption mechanisms. The desorption study asserted the reusability of both the biosorbents to a maximum of three cycles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157841 | PMC |
http://dx.doi.org/10.1021/acsomega.3c00142 | DOI Listing |
ACS EST Air
January 2025
Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.
Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.
View Article and Find Full Text PDFFront Antibiot
April 2024
The Science Academy, Istanbul, Türkiye.
The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhengzhou University, College of Chemistry and Molecular Engineering, CHINA.
Time-dependent afterglow colored (TDAC) behavior differs from static afterglow by involving wavelength changes, enabling low-cost, high-level encryption and anti-counterfeiting. However, the existing carbon dot (CD)-based TDAC materials lack a clear mechanistic explanation and controllable wavelength changes, significantly hindering the progress of practical applications in this field. In this study, we synthesized CDs composites with customizable tunable TDAC wavelengths across the visible region.
View Article and Find Full Text PDFNature
January 2025
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Southwest Jiaotong University, Sichuan, Chengdu 611756, China. Electronic address:
The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!