In this paper, Raman and X-ray photoelectron spectroscopies were applied to analyze compositional and structural variations of the generated activated carbon (AC), as induced by changing carbonate source in three different types of systems, PVDF/MCO (M = Li, Na, and K). According to the variations of / and sp/sp ratios, a strong dependence of the AC structure on the type and content of the initial carbonate was found, determined by practical dehydrofluorination reactions associated with oxygen incorporation in AC and side reactions, because of the property variation induced by the difference in the cation of the carbonate sources. This procedure clarified the process of PVDF dehydrofluorination and the formation of activated carbon, which helps to optimize the material performance of the percolative composite for flexible energy storage applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157866PMC
http://dx.doi.org/10.1021/acsomega.2c06857DOI Listing

Publication Analysis

Top Keywords

carbonate source
8
activated carbon
8
carbonate
5
source dehydrofluorination
4
dehydrofluorination process
4
process polyvinylidene
4
polyvinylidene fluoride/alkali
4
fluoride/alkali metal
4
metal carbonate
4
carbonate composites
4

Similar Publications

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.

View Article and Find Full Text PDF

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

Purpose Of Review: A major contributor to household air pollution (HAP) in sub-Saharan Africa (SSA) is unclean cooking fuel. Improved cookstove technology (ICT) interventions have been promoted as a solution, but their impacts on health are unclear. Our aim is to conduct a systematic review to explore the impacts of ICT interventions on health outcomes in SSA.

View Article and Find Full Text PDF

Engineering Saccharomyces cerevisiae for growth on xylose using an oxidative pathway.

Appl Microbiol Biotechnol

January 2025

Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.

The fermentative production of valuable chemicals from lignocellulosic feedstocks has attracted considerable attention. Although Saccharomyces cerevisiae is a promising microbial host, it lacks the ability to efficiently metabolize xylose, a major component of lignocellulosic feedstocks. The xylose oxidative pathway offers advantages such as simplified metabolic regulation and fewer enzymatic steps.

View Article and Find Full Text PDF

Nanosensor for Fe(II) and Fe(III) Allowing Spatiotemporal Sensing .

Nano Lett

January 2025

Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.

Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!