A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning models to predict micronutrient profile in food after processing. | LitMetric

The information on nutritional profile of cooked foods is important to both food manufacturers and consumers, and a major challenge to obtaining precise information is the inherent variation in composition across biological samples of any given raw ingredient. The ideal solution would address precision and generability, but the current solutions are limited in their capabilities; analytical methods are too costly to scale, retention-factor based methods are scalable but approximate, and kinetic models are bespoke to a food and nutrient. We provide an alternate solution that predicts the micronutrient profile in cooked food from the raw food composition, and for multiple foods. The prediction model is trained on an existing food composition dataset and has a 31% lower error on average (across all foods, processes and nutrients) than predictions obtained using the baseline method of retention-factors. Our results argue that data scaling and transformation prior to training the models is important to mitigate any yield bias. This study demonstrates the potential of machine learning methods over current solutions, and additionally provides guidance for the future generation of food composition data, specifically for sampling approach, data quality checks, and data representation standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160345PMC
http://dx.doi.org/10.1016/j.crfs.2023.100500DOI Listing

Publication Analysis

Top Keywords

food composition
12
machine learning
8
micronutrient profile
8
profile cooked
8
current solutions
8
food
7
learning models
4
models predict
4
predict micronutrient
4
profile food
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!