Dynamic changes in sensory representations have been basic tenants of studies in neural coding and plasticity. In olfaction, relatively little is known about the dynamic range of changes in odor representations under different brain states and over time. Here, we used time-lapse two-photon calcium imaging to describe changes in odor representation by mitral cells, the output neurons of the mouse olfactory bulb. Using anesthetics as a gross manipulation to switch between different brain states (wakefulness and under anesthesia), we found that odor representations by mitral cells undergo significant re-shaping across states but not over time within state. Odor representations were well balanced across the population in the awake state yet highly diverse under anesthesia. To evaluate differences in odor representation across states, we used linear classifiers to decode odor identity in one state based on training data from the other state. Decoding across states resulted in nearly chance-level accuracy. In contrast, repeating the same procedure for data recorded within the same state but in different time points, showed that time had a rather minor impact on odor representations. Relative to the differences across states, odor representations remained stable over months. Thus, single mitral cells can change dynamically across states but maintain robust representations across months. These findings have implications for sensory coding and plasticity in the mammalian brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10157098 | PMC |
http://dx.doi.org/10.3389/fncir.2023.1157259 | DOI Listing |
Neuroimage
February 2025
Chemical Senses and Mental Health Lab, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:
Previous research has revealed that the insula, pallidum, thalamus, hippocampus, middle frontal gyrus, and supplementary motor area are activated during odor memory and that the performance of olfactory working memory is affected by the verbalization of odors. However, the neural mechanisms underlying olfactory working memory and the role of verbalization in olfactory working memory are not fully understood. Twenty-nine participants were enrolled in a study to complete olfactory and visual n-back tasks using high- and low-verbalizability stimuli while undergoing fMRI imaging.
View Article and Find Full Text PDFChem Senses
January 2025
Department of Biological Science, Florida State University, Tallahassee, FL, United States.
Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.
View Article and Find Full Text PDFFood Chem
March 2025
China Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, 100048, China. Electronic address:
Odor-taste interaction has gained success in enhancing saltiness perception. This work aimed to provide candidate odorants for saltiness enhancement. Volatile compounds and their frequencies in salty foods were systematically analyzed.
View Article and Find Full Text PDFCurr Biol
January 2025
Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA. Electronic address:
Social encounters are inherently multisensory events, yet how and where social cues of distinct sensory modalities merge and interact in the brain is poorly understood. When their pups wander away from the nest, mother mice use a combination of vocal and olfactory signals emitted by the pups to locate and retrieve them. Previous work revealed the emergence of multisensory interactions in the auditory cortex (AC) of both dams and virgins who cohabitate with pups ("surrogates").
View Article and Find Full Text PDFiScience
December 2024
Brain Institute, Federal University of Rio Grande do Norte, Natal, RN 59078, Brazil.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!