Background: One of the measures for controlling the coronavirus disease 2019 (COVID-19) pandemic was the mass closure of gyms. This measure leads us to determine the differences between indoor and outdoor air quality. That is why the objective of this study was to analyse the indoor air quality of a sports centre catering to small groups and rehabilitation.

Methods: The study was conducted in a single training centre, where 26 measurements were taken in two spaces (indoors and outdoors). The air quality index, temperature, relative humidity, total volatile compounds, carbon monoxide, ozone, formaldehyde, carbon dioxide, and particulate matter were measured indoors and outdoors using the same protocol and equipment. These measurements were taken twice, once in the morning and once in the afternoon, with all measurements made at the same time, 10 am and 6 pm, respectively. Additionally, four determinations of each variable were collected during each shift, and the number of people who had trained in the room and the number of trainers were counted.

Results: In the different variables analysed, the results show that CO and RH levels are higher indoors than outdoors in both measurement shifts. Temperatures are higher outside than inside and, in the evening, than in the morning. TVOC, AQI and PM show less variation, although they are higher outdoors in the morning. CO is highest indoors. HCHO levels are almost negligible and do not vary significantly, except for a slight increase in the afternoon outside. Ozone levels are not significant. All the variables showed practically perfect reliability in all the measurements, except for ozone measured outside in the morning. On the other hand, the variables exhibit variations between indoors and outdoors during the morning and afternoon, except for the three types of PM. Also, the data show that all the main variables measured inside the sports training centre are similar between morning and afternoon. However, outside, temperature, relative humidity and HCHO levels show significant differences between morning and afternoon while no differences are observed for the other variables.

Conclusion: The indoor air quality of the training centre assessed was good and met current regulations; some of its components even exhibited better levels than fresh air. This article is the first to measure indoor air quality in a sports training centre catering to rehabilitation and small groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158773PMC
http://dx.doi.org/10.7717/peerj.15298DOI Listing

Publication Analysis

Top Keywords

air quality
24
training centre
20
indoor air
16
indoors outdoors
16
morning afternoon
16
quality training
8
quality sports
8
centre catering
8
small groups
8
temperature relative
8

Similar Publications

Addressing Water Scarcity to Achieve Climate Resilience and Human Health.

Integr Environ Assess Manag

January 2025

Department of Medicine, Division of Occupational, Environmental and Climate Medicine, University of California, San Francisco; San Francisco, California, 94158United States.

Water scarcity is projected to affect half of the world's population, gradually exacerbated by climate change. This article elaborates from a panel discussion at the 2023 United Nations Water Conference on Addressing Water Scarcity to Achieve Climate Resilience and Human Health. Understanding and addressing water scarcity goes beyond hydrological water balances to also include societal and economic measures.

View Article and Find Full Text PDF

Factors influencing spatiotemporal variability of NO concentration in urban area: a GIS and remote sensing-based approach.

Environ Monit Assess

January 2025

Air Quality, Climate Change and Health (ACH) Lab, Department of Public Health and Informatics, Jahangirnagar University, 1342, Savar, Dhaka, Bangladesh.

The growing global attention on urban air quality underscores the need to understand the spatiotemporal dynamics of nitrogen dioxide (NO) and its environmental and anthropogenic factors, particularly in cities like Dhaka (Gazipur), Bangladesh, which suffers from some of the world's worst air quality. This study analysed NO concentrations in Gazipur from 2019 to 2022 using Sentinel-5P TROPOMI data on the Google Earth Engine (GEE) platform. Correlations and regression analysis were done between NO levels and various environmental factors, including land surface temperature (LST), normalized difference vegetation index (NDVI), land use and land cover (LULC), population density, road density, settlement density, and industry density.

View Article and Find Full Text PDF

Purpose Of Review: Indoor air pollution is likely to be elevated in multi-family housing and to contribute to health disparities, but limited studies to date have systematically considered the empirical evidence for exposure differentials between multi-family and single-family housing. Our goal is to separately examine the drivers of residential indoor air pollution, including outdoor air pollution, ventilation and filtration, indoor sources, and occupant activity patterns, using secondhand smoke as a case study to examine the behavioral dimensions of indoor environmental interventions.

Recent Findings: Within studies published from 2018 to 2023, multi-family homes have higher average outdoor air pollution than single-family homes given their more frequent presence in urban and near-roadway settings.

View Article and Find Full Text PDF

Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.

Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!