Ambient desorption/ionization mass spectrometry (ADI-MS) has been broadly applied to accomplish direct analysis without sample preparation or separation. However, quantification capabilities and analytical performance are sometimes limited. Here, we report signal enhancement effects and improved quantification capabilities in plasma-based ADI-MS, when a flowing atmospheric-pressure afterglow (FAPA) source is used to probe analytes on tailored thin-layer chromatography (TLC) plates. It was found that quantitative results could be achieved when the TLC plate merely served as a sampling plate without a preceding separation step. Specifically, the dynamic response of caffeine, nicotine, acetaminophen, and progesterone was investigated with FAPA-MS on a variety of different TLC surfaces (normal-phase silica, reversed-phase-modified silica, cyano [CN]-modified silica, and dimethyl [RP2]-modified silica). All analytes were studied as single-analyte standards and in a multianalyte mixture to evaluate the effect of sample plates and sample matrix on analytical performance and competitive ionization processes. Overall, dimethyl (RP2)- and CN-modified silica resulted in superior performance compared to other TLC materials. After careful optimization and without the use of internal standards, linear ranges of five orders of magnitude were accessible for caffeine and nicotine. Limits of detection down to femtomole amounts of analyte were achieved. Quantitation limits using RP2-TLC and FAPA-MS were 0.062, 0.062l, 0.31, and 14 pmol for caffeine, nicotine, progesterone, and acetaminophen, respectively. Interestingly, the presence of nicotine at relatively high amounts reduced the signal of the other analytes, an observation that was found to correlate with the differences in the enthalpy of vaporization (Δ) and proton affinity. To prove the quantitative capabilities, nicotine quantification in a real matrix-heavy e-liquid sample was demonstrated using an isotopically labeled standard. The use of TLC-based surfaces with FAPA-MS can aid in the direct and quantitative mass spectrometric investigation of complex mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00037028231168617DOI Listing

Publication Analysis

Top Keywords

quantification capabilities
12
caffeine nicotine
12
sample plates
8
plates sample
8
sample matrix
8
flowing atmospheric-pressure
8
atmospheric-pressure afterglow
8
mass spectrometry
8
analytical performance
8
sample
6

Similar Publications

Despite significant advancements in sample preparation, instrumentation and data analysis, single-cell proteomics is currently limited by proteomic depth and quantitative performance. Here we demonstrate highly improved depth of proteome coverage as well as accuracy and precision for quantification of ultra-low input amounts. Using a tailored library, we identify up to 7,400 protein groups from as little as 250 pg of HeLa cell peptides at a throughput of 50 samples per day.

View Article and Find Full Text PDF

Deep learning has proven capable of automating key aspects of histopathologic analysis. However, its context-specific nature and continued reliance on large expert-annotated training datasets hinders the development of a critical mass of applications to garner widespread adoption in clinical/research workflows. Here, we present an online collaborative platform that streamlines tissue image annotation to promote the development and sharing of custom computer vision models for PHenotyping And Regional Analysis Of Histology (PHARAOH; https://www.

View Article and Find Full Text PDF

Promising mass spectrometry imaging: exploring microscale insights in food.

Crit Rev Food Sci Nutr

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.

This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms.

View Article and Find Full Text PDF

The integration of artificial intelligence (AI) into new approach methods (NAMs) for toxicology rep-resents a paradigm shift in chemical safety assessment. Harnessing AI appropriately has enormous potential to streamline validation efforts. This review explores the challenges, opportunities, and future directions for validating AI-based NAMs, highlighting their transformative potential while acknowledging the complexities involved in their implementation and acceptance.

View Article and Find Full Text PDF

Accurate 3D characterization of osteocyte lacunae is important when investigating the role of osteocytes under various physiological and pathological conditions but remains a challenge. With the continued development of laboratory X-ray micro-computed tomography, an increasing number of studies employ these techniques beyond traditional bone morphometry to quantify osteocyte lacunae. However, there is a lack of knowledge on the effect of measurement parameters on the image quality and resolution and in turn the osteocyte lacunae quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!