Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Intracellular delivery of therapeutic biomacromolecules, including nucleic acids and proteins, attracts extensive attention in biotherapeutics for various diseases. Herein, a strategy is proposed for the construction of poly(disulfide)s for the efficient delivery of both nucleic acids and proteins into cells. A convenient photo-cross-linking polymerization was adopted between disulfide bonds in two modified lipoic acid monomers (Zn coordinated with dipicolylamine analogue () and guanidine ()). The disulfide-containing main chain of the resulting poly(disulfide)s was responsive to reducing circumstance, facilitating the release of cargos. By screening the feeding ratio of and , the resulting poly(disulfide)s exhibited better performance in the delivery of nucleic acids including plasmid DNA and siRNA than commercially available transfection reagents. Cellular uptake results revealed that the polymer/cargo complexes entered the cells mainly following a thiol-mediated uptake pathway. Meanwhile, the polymer could also efficiently deliver proteins into cells without an obvious loss of protein activity, showing the versatility of the poly(disulfide)s for the delivery of various biomacromolecules. Moreover, the therapeutic effect of the materials was verified in the E.G7-OVA tumor-bearing mice. Ovalbumin-based nanovaccine induced a strong cellular immune response, especially cytotoxic T lymphocyte cellular immune response, and inhibited tumor growth. These results revealed the promise of the poly(disulfide)s in the application of both gene therapy and immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00231 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!