Developing photostable two-photon dyes with high brightness and negligible photocytotoxicity is of key importance in fluorescence imaging but remains a huge challenge. Here, a two-photon dye with ultrahigh brightness and photostability is demonstrated for high-performance long-term two-photon fluorescence imaging. By terminated donor engineering, the designed DBD shows a higher two-photon absorption cross-section (δ, 418 GM vs 329 GM) and photoluminescence quantum yield (Φ , 62.74% vs 54.63%) than its counterpart DBA. As a consequence, two-photon fluorescence brightness (δ×Φ ) of DBD exhibits a 10-folded enhancement (262 GM vs 19 GM) in comparison with typical Coumarin 307 dye. More importantly, DBD displays ultrahigh photostability and negligible photobleaching under 10 min femtosecond laser irradiation, which stands in marked contrast to Coumarin 307. Furthermore, femtosecond transient absorption spectroscopy ascribes this ultrahigh photostability and negligible photobleaching to the inefficient intersystem crossing. With these merits, DBD can be used long-term two-photon fluorescence imaging in vitro.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300351 | DOI Listing |
Heliyon
January 2025
BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.
Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.
View Article and Find Full Text PDFJ Soc Cardiovasc Angiogr Interv
December 2024
Philips Healthcare, San Diego, California.
iScience
January 2025
Department of Artificial Intelligence, Hanyang University, Seoul 04763, South Korea.
We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!