Photostable Organic Two-photon Dyes with Ultrahigh Brightness for Long-term Fluorescence Imaging.

Chem Asian J

Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Published: June 2023

Developing photostable two-photon dyes with high brightness and negligible photocytotoxicity is of key importance in fluorescence imaging but remains a huge challenge. Here, a two-photon dye with ultrahigh brightness and photostability is demonstrated for high-performance long-term two-photon fluorescence imaging. By terminated donor engineering, the designed DBD shows a higher two-photon absorption cross-section (δ, 418 GM vs 329 GM) and photoluminescence quantum yield (Φ , 62.74% vs 54.63%) than its counterpart DBA. As a consequence, two-photon fluorescence brightness (δ×Φ ) of DBD exhibits a 10-folded enhancement (262 GM vs 19 GM) in comparison with typical Coumarin 307 dye. More importantly, DBD displays ultrahigh photostability and negligible photobleaching under 10 min femtosecond laser irradiation, which stands in marked contrast to Coumarin 307. Furthermore, femtosecond transient absorption spectroscopy ascribes this ultrahigh photostability and negligible photobleaching to the inefficient intersystem crossing. With these merits, DBD can be used long-term two-photon fluorescence imaging in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1002/asia.202300351DOI Listing

Publication Analysis

Top Keywords

fluorescence imaging
16
two-photon fluorescence
12
two-photon dyes
8
ultrahigh brightness
8
long-term two-photon
8
coumarin 307
8
ultrahigh photostability
8
photostability negligible
8
negligible photobleaching
8
two-photon
7

Similar Publications

A co-registration method to validate optical coherence tomography in the breast surgical cavity.

Heliyon

January 2025

BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre Nedlands and Centre for Medical Research, The University of Western Australia, Perth, Australia.

Breast-conserving surgery accompanied by adjuvant radiotherapy is the standard of care for patients with early-stage breast cancer. However, re-excision is reported in 20-30 % of cases, largely because of close or involved tumor margins in the specimen. Several intraoperative tumor margin assessment techniques have been proposed to overcome this issue, however, none have been widely adopted.

View Article and Find Full Text PDF

Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications.

Research (Wash D C)

January 2025

Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.

Recent advancements in nanotechnology have revolutionized terahertz (THz) technology. By enabling the creation of compact, efficient devices through nanoscale structures, such as nano-thick heterostructures, metasurfaces, and hybrid systems, these innovations offer unprecedented control over THz wave generation and modulation. This has led to substantial enhancements in THz spectroscopy, imaging, and especially bio-applications, providing higher resolution and sensitivity.

View Article and Find Full Text PDF

Pretheranostic agents with extraordinaryNIRF/photoacoustic imaging performanceand photothermal oncotherapy efficacy.

Acta Pharm Sin B

December 2024

Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.

Cervical cancer, the most common gynecological malignancy, significantly and adversely affects women's physical health and well-being. Traditional surgical interventions and chemotherapy, while potentially effective, often entail serious side effects that have led to an urgent need for novel therapeutic methods. Photothermal therapy (PTT) has emerged as a promising approach due to its ability to minimize damage to healthy tissue.

View Article and Find Full Text PDF

We present a Fourier neural operator (FNO)-based surrogate solver for the efficient optimization of wavefronts in tunable metasurface controls. Existing methods, including the Gerchberg-Saxton algorithm and the adjoint optimization, are often computationally demanding due to their iterative processes, which require numerical simulations at each step. Our surrogate solver overcomes this limitation by providing highly accurate gradient estimations with respect to changes in tunable meta-atoms without the need for direct simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!