Spatial transcriptomics is a revolutionary technique that enables researchers to characterise tissue architecture and localisation of gene expression. A plethora of technologies that map gene expression are currently being developed, aiming to facilitate spatially resolved, high-dimensional assessment of gene transcription in the context of human skin research. Knowing which gene is expressed by which cell and in which location within skin, facilitates understanding of skin function and dysfunction in both health and disease. In this review, we summarise the available spatial transcriptomic methods and we describe their application to a broad spectrum of dermatological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/exd.14827 | DOI Listing |
J Transl Med
January 2025
Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
Background: Ferroptosis and immune responses are critical pathological events in spinal cord injury (SCI), whereas relative molecular and cellular mechanisms remain unclear.
Methods: Micro-array datasets (GSE45006, GSE69334), RNA sequencing (RNA-seq) dataset (GSE151371), spatial transcriptome datasets (GSE214349, GSE184369), and single cell RNA sequencing (scRNA-seq) datasets (GSE162610, GSE226286) were available from the Gene Expression Omnibus (GEO) database. Through weighted gene co-expression network analysis and differential expression analysis in GSE45006, we identified differentially expressed time- and immune-related genes (DETIRGs) associated with chronic SCI and differentially expressed ferroptosis- and immune-related genes (DEFIRGs), which were validated in GSE151371.
Brief Bioinform
November 2024
Cancer Institute, Suzhou Medical College, Soochow University, NO. 199 Ren-ai Road, SIP, Suzhou 215000, China.
Alternative polyadenylation (APA) is an important driver of transcriptome diversity that generates messenger RNA isoforms with distinct 3' ends. The rapid development of single-cell and spatial transcriptomic technologies opened up new opportunities for exploring APA data to discover hidden cell subpopulations invisible in conventional gene expression analysis. However, conventional gene-level analysis tools are not fully applicable to APA data, and commonly used unsupervised dimensionality reduction methods often disregard experimentally derived annotations such as cell type identities.
View Article and Find Full Text PDFDev Cell
January 2025
Program in Epithelial Biology and Center for Definitive and Curative Medicine, Stanford University, Stanford, CA, USA. Electronic address:
Human pluripotent stem cell-derived tissue engineering offers great promise for designer cell-based personalized therapeutics, but harnessing such potential requires a deeper understanding of tissue-level interactions. We previously developed a cell replacement manufacturing method for ectoderm-derived skin epithelium. However, it remains challenging to manufacture the endoderm-derived esophageal epithelium despite possessing a similar stratified epithelial structure.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments.
View Article and Find Full Text PDFCancers (Basel)
December 2024
CeRePP, 75020 Paris, France.
Purpose: To identify molecular changes during PCa invasion of adipose space using Spatial Transcriptomic Profiling of PCa cells.
Methods: This study was performed on paired intraprostatic and extraprostatic samples obtained from radical prostatectomy with pT3a pathological stages.
Results: Differential gene expression revealed upregulation of heat shock protein genes: DNAJB1, HSPA8, HSP90AA1, HSPA1B, HSPA1A in PCa PanCK+ cells from the adipose periprostatic space.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!