Artificial humic acid regulates the impact of fungal community on soil macroaggregates formation.

Chemosphere

Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China. Electronic address:

Published: August 2023

Artificial humic acid (A-HA), which is synthesized from agricultural wastes and has high similarity to a natural humic substance (HS) extracted from soil, has been proven by our group to have potential for biological carbon sequestration in black soils. However, the mechanism involves in the application of A-HA on soil aggregation processes resulting from microbial activity stimulation and modifications to microbial communities remains unclear. This study investigates the correlation between the formation and stability of soil aggregates and fungal communities with various amounts of A-HA added to the rhizosphere and non-rhizosphere soil. A-HA can increase the total organic carbon (TOC) and dissolved organic carbon (DOC) concentrations in soil, promoting macroaggregate formation and increasing the mean weight diameter (MWD). In addition, soil aggregate binding agents such as polysaccharides, protein, extracellular polymeric substances (EPS), and glomalin-related soil protein (GRSP) are significantly increased by the addition of A-HA. A-HA can drive microaggregate to assemble into macroaggregate by increasing the abundance of beneficial fungi (e.g., Trichoderma and Mortierella). The co-occurrence network supports that A-HA shifted the key species and increased interactions of fungal taxa. This study will lay a solid foundation for sustainable agricultural development of A-HA application for soil fertility restoration in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.138822DOI Listing

Publication Analysis

Top Keywords

soil
9
artificial humic
8
humic acid
8
a-ha
8
organic carbon
8
acid regulates
4
regulates impact
4
impact fungal
4
fungal community
4
community soil
4

Similar Publications

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Mitigating ice sheets and mountain glaciers melt with geoengineering.

Sci Total Environ

January 2025

Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

The inadequacy of current emission reduction measures necessitates exploring innovative approaches to address the critical issue of ice sheet and mountain glacier melting. Geoengineering emerges as a potential solution to mitigate severe cryospheric changes. This review systematically examines geoengineering techniques tailored to ice sheets and mountain glaciers, analyzing their efficacy, risks, and limitations based on existing literature.

View Article and Find Full Text PDF

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Liquid crystal monomers in soil: Developing priority list based on the proposed soil health indicators.

J Hazard Mater

January 2025

National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Liquid crystal monomers (LCMs) are emerging pollutants that have attracted attention recently due to their unique chemical properties and wide applications. However, in-depth research on LCMs' potential risks to soil health remains blank. Therefore, 107 LCMs and nine soil health characterization proteins/enzymes were selected as research objects in this study.

View Article and Find Full Text PDF

Molecular-level insights of microplastic-derived soluble organic matter and heavy metal interactions in different environmental occurrences through EEM-PARAFAC and FT-ICR MS.

J Hazard Mater

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China. Electronic address:

The interactions between microplastic-derived dissolved organic matter (MPs-DOM) and heavy metals (Cu, Pb, and Cd) regulate the complex environmental transport behavior of pollutants in terrestrial and aquatic environments. In this study, fluorescence excited emission matrix spectroscopy combined with parallel factor analysis (EEM-PARAFAC) and electrospray ionization coupled Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) were employed to investigate the complexation mechanism of MPs-DOM with heavy metals, as well as the effects of different environmental occurrences of MPs-DOM on the transport behaviors of heavy metals in saturated porous medium. The findings demonstrated that MPs-DOM, particularly humic-like substances containing aromatic structures and various oxygen functional groups, could form stable complexes with heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!