Ammonia stress in aquaculture systems poses a great threat to the growth and survival of the Pacific whiteleg shrimp Litopenaeus vannamei. Although the ammonia stress tolerance capacity of L. vannamei has been found to vary significantly among different breeding families, the underneath mechanisms are still largely unknown. In this study, the ammonia tolerance capacity of different L. vannamei breeding families was compared. Results confirmed the significant differences in the ammonia adaptability among different families. To ascertain the underlying adaptive strategies, ATP status, ATP synthase activity, expression and activities of ammonia excretion and metabolism-related enzymes, and apoptosis in shrimp gills were analyzed. Furthermore, transcriptomic analyses were also performed to elucidate the molecular mechanisms. Our results indicated that ammonia-tolerant L. vannamei may possess (1) enhanced ability to excrete ammonia, (2) better capacity to convert ammonia into less toxic products, and (3) sufficient energy reserves for ammonia-compensating processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2023.106549 | DOI Listing |
Foods
January 2025
State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
Lignification often occurs during low-temperature storage in loquat fruit, leading to increased firmness and lignin content, water loss, and changes in flavor. As induced stress factors, short-time high-oxygen pre-treatment (SHOP) can initiate resistant metabolism and regulate the physicochemical qualities during fresh fruit storage. However, the effect of SHOP on the lignification and quality of loquat has been reported less.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Life Science, National Taiwan University, Taipei 10617, Taiwan. Electronic address:
Animals must adapt their behaviors in response to environmental stressors to enhance survival prospects. Aquatic organisms, particularly teleost fish, face unique environmental challenges, making them ideal models for studying environmental stress adaptation. While previous research on acute environmental stress acclimation provided valuable insights, it often overlooked potential sex-specific responses.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, 38000, Pakistan.
The lactic acid bacterial (LAB) species have proven multifaceted roles in sustainable agriculture due to their biologically safe nature, making them eco-friendly. However, their plant growth-improving mechanisms in stressed and non-stressed conditions are still under consideration. Thus, the current work has been planned to evaluate the drought tolerance potential and plant growth-promoting (PGP) traits of Loigolactobacillus coryniformis BCH-4 in Zea mays L.
View Article and Find Full Text PDFSe Pu
February 2025
Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
Thromboxane A (TXA), a prothrombotic factor that induces platelet aggregation and thrombosis, acts as a vasoconstrictor by activating TXA receptors (TP receptors). TXA is extremely unstable and metabolizes into three major metabolites: 2,3-dinor thromboxane B (2,3-dinor-TXB), 11-dehydro TXB(11-dh-TXB), and 11-dehydro-2,3-dinor TXB(11-dh-2,3-dinor-TXB). 8-Iso-prostaglandin F(8-iso-PGF), a prostaglandin-like compound widely considered the best biomarker of oxidative stress, can also activate TP receptors.
View Article and Find Full Text PDFBiochemistry
January 2025
Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, United States.
Glutamine synthetase (GS) is a ubiquitous enzyme central to nitrogen metabolism, catalyzing the ATP-dependent formation of glutamine from glutamate and ammonia. Positioned at the intersection of nitrogen metabolism with carbon metabolism, the activity of GS is subject to sophisticated regulation. While the intricate regulatory pathways that govern GS were established long ago, recent work has demonstrated that homologues are controlled by multiple distinct regulatory patterns, such as the metabolite induced oligomeric state formation in archaeal GS by 2-oxoglutarate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!