Polyethylene (PE) pipes have been widely used in drinking water distribution systems across the world. In many cases, chlorine dioxide (ClO) is used to maintain a residual disinfectant concentration in potable water. Practical experiences have shown that the lifetime of PE pipes is significantly reduced due to exposure to drinking water with ClO. Recently, many companies have proposed new PE pipes with a modified formulation, which are more resistant to chlorine dioxide. However, a standardized test method for evaluating the long-term performances of PE pipes is still missing. This literature review was performed to provide a description of chlorine dioxide uses and degradation mechanisms of polyethylene pipes in real water distribution systems. Current accelerated aging methods to evaluate long-term performances of PE pipes exposed to ClO are described and discussed along with the common technics used to characterize the specimens. Accelerate aging methods can be distinguished in immersion aging tests and pressurized pipe loop tests. Wide ranges of operational conditions (chlorine dioxide concentration, water pressure, water temperature, etc.) are applied, resulting in a great variety of results. It was concluded that pressurized looping tests applying semi-realistic operational conditions could better replicate the aging mechanisms occurring in service. Despite this, the acceleration and the evaluation of the long-term performance are still difficult to determine precisely. Further experimentation is needed to correlate chemical-mechanical characterization parameters of PE pipes with their lifetime in service.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120030DOI Listing

Publication Analysis

Top Keywords

chlorine dioxide
20
polyethylene pipes
12
drinking water
12
aging methods
12
pipes exposed
8
degradation mechanisms
8
accelerated aging
8
water distribution
8
distribution systems
8
long-term performances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!