Adsorption is one of the most common methods of pollution treatment. The selectivity for pollutants and recyclability of adsorbents are crucial to reduce the treatment cost. Layered double hydroxide (LDH) materials are one type of adsorbent with poor recyclability. Prussian blue (PB) is a sturdy and inexpensive metal-organic framework material that can be used as the precursor for synthesizing paramagnetic ferroferric oxide (FeO). It is intriguing to build some reusable adsorbents with magnetic separation by integrating LDH and PB. In this work, paramagnetic FeO-calcined LDH (FeO@cLDH) core-shell adsorbent was designed and prepared by the calcination of PB-ZnAl layered double hydroxide (PB@LDH) core-shell precursor, which exhibits high anionic dyes selectivity in wastewater solutions. The paramagnetism and adsorption capability of FeO@cLDH come from the FeO core and calcined ZnAl-LDH shell, respectively. FeO@cLDH shows an adsorption capacity of 230 mg g for acid orange and a high selectivity for anionic dyes in cation-anion mixed dye solutions. The regeneration process indicates that the high selectivity for anions is related to the specific hydration recovery process of ZnAl-LDH. The synergistic effect of the paramagnetic FeO core and calcined ZnAl-LDH shell makes FeO@cLDH an excellent magnetic separation adsorbent with high selectivity to anions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.151 | DOI Listing |
Small
January 2025
Research Institute for Sustainable Energy (RISE), TCG-CREST, Salt Lake, Kolkata, 700091, India.
Advancing next-generation battery technologies requires a thorough understanding of the intricate phenomena occurring at anodic interfaces. This focused review explores key interfacial processes, examining their thermodynamics and consequences in ion transport and charge transfer kinetics. It begins with a discussion on the formation of the electro chemical double layer, based on the GuoyChapman model, and explores how charge carriers achieve equilibrium at the interface.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.
SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
The replacement of the thermodynamically unfavorable anodic oxygen evolution reaction (OER) with a more favorable organic oxidation reaction, such as the anodic oxidation of benzylamine, has garnered significant interest in hybrid water electrolyzer cells. This approach promises the production of value-added chemicals alongside hydrogen fuel generation, improving overall energy efficiency. However, achieving high current density for benzylamine oxidation without interference from OER remains a challenge, limiting the practical efficiency of the electrolyzer cell.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Life Sciences, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province, Harbin 150040, PR China. Electronic address:
In this study, we developed a double-layer colon-targeted microcapsule. It used the Maillard product of gelatin-isomaltooligosaccharide (GI180) and zein-shellac complex (ZS) as bio-based materials, plant extracts (MPL) and Lactobacillus plantarum JJBYG12 (JJBYG12) were co-encapsulated, endowing them with strong resistance to harsh environments and precise intestinal adhesion and targeting ability. The research results indicated that ZS11 exhibits hydrogen bonding and electrostatic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!