Lithium and phosphorus-functionalized graphitic carbon nitride monolayer for efficient hydrogen storage: A DFT study.

J Mol Graph Model

Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

Published: July 2023

We have explored the consequence of lithium and phosphorous functionalization on the graphitic carbon nitride (g-CN) monolayer for hydrogen storage using density functional theory. Both pristine and Li and P decorated g-CN show a semiconductor nature. The substantial overlap between the s orbital of Li and the p orbital of nitrogen near the Fermi level shows the binding between Li and the g-CN. The repositioning of HOMO and LUMO is noticed in the Li and P decorated g-CN. The Bader charge analysis indicates the charge allocation from the Li and P atom to the g-CN, which results in the adsorption of H by electrostatic interaction. The hydrogen storage capacity of 5.78 wt% is obtained after functionalizing Li and P into the g-CN. The obtained adsorption energies for the H adsorption and the H desorption temperature confirm that Li and P functionalized g-CN is a fascinating candidate for the reversible loading of H at ambient conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2023.108493DOI Listing

Publication Analysis

Top Keywords

hydrogen storage
12
graphitic carbon
8
carbon nitride
8
decorated g-cn
8
g-cn adsorption
8
g-cn
7
lithium phosphorus-functionalized
4
phosphorus-functionalized graphitic
4
nitride monolayer
4
monolayer efficient
4

Similar Publications

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Developing high-energy-density lithium-sulfur batteries faces serious polysulfide shuttle effects and sluggish conversion kinetics, often necessitating the excessive use of electrolytes, which in turn adversely affects battery performance. Our study introduces a meticulously designed electrocatalyst, Cu-CeO@N/C, to enhance lean-electrolyte lithium-sulfur battery performance. This catalyst, featuring in situ synthesized Cu clusters, regulates oxygen vacancies in CeO and forms Cu-CeO heterojunctions, thereby diminishing sulfur conversion barriers and hastening reaction kinetics through the generation of S/S intermediates.

View Article and Find Full Text PDF

Room-Temperature CsPbI-Quantum-Dot Reinforced Solid-State Li-Polymer Battery.

Small

January 2025

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.

A novel polymer electrolyte based on CsPbI quantum dots (QDs) reinforced polyacrylonitrile (PAN), named as PIL, is exploited to address the low room-temperature (RT) ion conductivity and poor interfacial compatibility of polymer solid-state electrolytes. After optimizing the content of CsPbI QDs, RT ion conductivity of PIL largely increased from 0.077 to 0.

View Article and Find Full Text PDF

Preparation and Mechanism Analysis of Boiling Resistance of the Fresh Alum-Free Sweet Potato Vermicelli Containing Gliadin Fractions.

Foods

January 2025

Tianjin Key Laboratory of Food Biotechnology, Institute of Collaborative Innovation in Great Health, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.

Alum, an essential additive in sweet potato vermicelli (SPV) production, is harmful to health. To eliminate the harm to the human body caused by alum in sweet potato vermicelli, and considering the different viscous properties of gliadin fractions, an experiment was performed to replace alum with gliadin fractions to enhance the boiling resistance of SPV in this study. The results showed that the longest boiling-resistant time of fresh SPV extended to 34.

View Article and Find Full Text PDF

Phytic Acid Delays the Senescence of Fruit by Regulating Antioxidant Capacity and the Ascorbate-Glutathione Cycle.

Int J Mol Sci

December 2024

Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.

fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!