In this study, a ratiometric electrochemical immunosensor has been developed to detect the cytokeratin 19 fragment 21-1 (CYFRA21-1) biomarker in a highly sensitive manner through a dual-signal output model. As one of signal indicators, snowflake-like FeSe loaded with AuNPs (FeSe-AuNPs) as sensing substrate with good conductivity and large active sites provides a differential pulse voltammetry (DPV) signal at +0.4 V. Another signal indicator, toluidine blue (TB) with the water-solubility property is an excellent redox probe that can generate DPV signal at -0.3 V. To solve the water-solubility problem, the TB is absorbed with polyacrylic acid (PAA) functionalized ZIF-67 (PAA-ZIF-67), which retains the properties of ZIF-67 that are large specific surface area and strong adsorption properties. The ratio of signals, stemmed from PAA-ZIF@TB and FeSe-AuNPs (I/I), increases with the CYFRA21-1 concentration. Under optimal experimental conditions, CYFRA21-1 was detected in a wide dynamic range from 0.1 pg/mL to 100 ng/mL, with a lower limit of detection of 0.02 pg/mL. Looking ahead, this ratio based strategy provides prospective clinical applications for detecting other biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!