A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Re-examining the evidence for the mother tree hypothesis - resource sharing among trees via ectomycorrhizal networks. | LitMetric

AI Article Synopsis

  • The concept that 'mother trees' share carbon with seedlings through mycorrhizal fungal networks has both captivated and polarized the scientific community, impacting our view of forest ecology.
  • Current studies indicate that the idea of beneficial carbon transfer is questionable, with findings suggesting insufficient evidence to support significant net carbon transfer among trees.
  • The relationship between fungi and trees in this context may not provide clear advantages for fungi, further complicating this hypothesis and raising doubts about its compatibility with observed forest regeneration patterns.

Article Abstract

Seminal scientific papers positing that mycorrhizal fungal networks can distribute carbon (C) among plants have stimulated a popular narrative that overstory trees, or 'mother trees', support the growth of seedlings in this way. This narrative has far-reaching implications for our understanding of forest ecology and has been controversial in the scientific community. We review the current understanding of ectomycorrhizal C metabolism and observations on forest regeneration that make the mother tree narrative debatable. We then re-examine data and conclusions from publications that underlie the mother tree hypothesis. Isotopic labeling methods are uniquely suited for studying element fluxes through ecosystems, but the complexity of mycorrhizal symbiosis, low detection limits, and small carbon discrimination in biological processes can cause researchers to make important inferences based on miniscule shifts in isotopic abundance, which can be misleading. We conclude that evidence of a significant net C transfer via common mycorrhizal networks that benefits the recipients is still lacking. Furthermore, a role for fungi as a C pipeline between trees is difficult to reconcile with any adaptive advantages for the fungi. Finally, the hypothesis is neither supported by boreal forest regeneration patterns nor consistent with the understanding of physiological mechanisms controlling mycorrhizal symbiosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.18935DOI Listing

Publication Analysis

Top Keywords

mother tree
12
tree hypothesis
8
forest regeneration
8
mycorrhizal symbiosis
8
re-examining evidence
4
evidence mother
4
hypothesis resource
4
resource sharing
4
sharing trees
4
trees ectomycorrhizal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!