Fresnel incoherent correlation holography (FINCH) is a well-established incoherent digital holography technique. In FINCH, light from an object point splits into two, differently modulated using two diffractive lenses with different focal distances and interfered to form a self-interference hologram. The hologram numerically back propagates to reconstruct the image of the object at different depths. FINCH, in the inline configuration, requires at least three camera shots with different phase shifts between the two interfering beams followed by superposition to obtain a complex hologram that can be used to reconstruct an object's image without the twin image and bias terms. In general, FINCH is implemented using an active device, such as a spatial light modulator, to display the diffractive lenses. The first version of FINCH used a phase mask generated by random multiplexing of two diffractive lenses, which resulted in high reconstruction noise. Therefore, a polarization multiplexing method was later developed to suppress the reconstruction noise at the expense of some power loss. In this study, a novel computational algorithm based on the Gerchberg-Saxton algorithm (GSA) called transport of amplitude into phase (TAP-GSA) was developed for FINCH to design multiplexed phase masks with high light throughput and low reconstruction noise. The simulation and optical experiments demonstrate a power efficiency improvement of ~ 150 and ~ 200% in the new method in comparison to random multiplexing and polarization multiplexing, respectively. The SNR of the proposed method is better than that of random multiplexing in all tested cases but lower than that of the polarization multiplexing method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164182 | PMC |
http://dx.doi.org/10.1038/s41598-023-34492-2 | DOI Listing |
Sci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFNature
January 2025
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong, 999077, China.
Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
Photic phenomena are more pronounced in presbyopia-corrected than in monofocal intraocular lens (IOL), causing dissatisfaction after cataract surgery. Photic Phenomena Test (PPT) quantifies photic phenomena in eyes with two types of presbyopia-corrected IOL. We examined the relationship between preoperative eye shape and pupil diameter.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Physics, Department of Optics and Optometry and Vision Sciences, Universitat de València, Burjassot, Spain.
A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!