A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of vanadium and response of inherent bacterial communities in vanadium-titanium magnetite tailings to beneficiation agents, temperature, and illumination. | LitMetric

Dynamics of vanadium and response of inherent bacterial communities in vanadium-titanium magnetite tailings to beneficiation agents, temperature, and illumination.

Environ Pollut

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China.

Published: August 2023

Vanadium-titanium (V-Ti) magnetite tailings contain toxic metals that could potentially pollute the surrounding environment. However, the impact of beneficiation agents, an integral part of mining activities, on the dynamics of V and the microbial community composition in tailings remains unclear. To fill this knowledge gap, we compared the physicochemical properties and microbial community structure of V-Ti magnetite tailings under different environmental conditions, including illumination, temperature, and residual beneficiation agents (salicylhydroxamic acid, sodium isobutyl xanthate, and benzyl arsonic acid) during a 28-day reaction. The results revealed that beneficiation agents exacerbated the acidification of the tailings and the release of V, among which benzyl arsonic acid had the greatest impact. The concentration of soluble V in the leachate of tailings with benzyl arsonic acid was 6.4 times higher than that with deionized water. Moreover, illumination, high temperatures, and beneficiation agents contributed to the reduction of V in V-containing tailings. High-throughput sequencing revealed that Thiobacillus and Limnohabitans adapted to the tailings environment. Proteobacteria was the most diverse phylum, and the relative abundance was 85.0%-99.1%. Desulfovibrio, Thiobacillus, and Limnohabitans survived in the V-Ti magnetite tailings with residual beneficiation agents. These microorganisms could contribute to the development of bioremediation technologies. The main factors affecting the diversity and composition of bacteria in the tailings were Fe, Mn, V, SO, total nitrogen, and pH of the tailings. Illumination inhibited microbial community abundance, while the high temperature (39.5 °C) stimulated microbial community abundance. Overall, this study strengthens the understanding of the geochemical cycling of V in tailings influenced by residual beneficiation agents and the application of inherent microbial techniques in the remediation of tailing-affected environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121743DOI Listing

Publication Analysis

Top Keywords

beneficiation agents
28
magnetite tailings
16
microbial community
16
tailings
12
v-ti magnetite
12
residual beneficiation
12
benzyl arsonic
12
arsonic acid
12
thiobacillus limnohabitans
8
community abundance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!