With the benefits of coming at low-cost, being light-weight and having a high formability and durability, conventional plastics are widely used in both industry and daily life. However, because of their durability and extensive half-life with poor degradability and the low recycling rate, large amounts of plastic waste are accumulated in various environments, posing a significant threat to organisms and ecosystems. Compared to conventional physical and chemical degradation, biodegradation of plastic might become a promising and environmentally friendly solution for this problem. One of the aims of this review is to briefly describe the impact of plastics (especially microplastics). To facilitate rapid advancements in the area of plastic biodegradation, this paper provides a comprehensive review of the candidate organisms capable of biodegrading plastics and originating from four categories including natural microorganisms, artificially derived microorganisms, algae and animal organisms. In addition, the potential mechanism during plastic biodegradation and associated driving factors are summarized and discussed. Furthermore, the recent biotechnological progress (e.g. synthetic biology, systems biology, etc.) is highlighted as being key for future research. Finally, innovative research avenues for future studies are proposed. Concluding, our review is addressing the practical application of plastic biodegradation and the plastic pollution, thus necessitating more sustainable developments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163908 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Food Security and Technology Center, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates. Electronic address:
Packaging made of plastic harms the environment. Thus, polysaccharide edible films are becoming a popular food packaging solution. Alginate is a biopolymer derived from seaweed that has the potential to create food packaging materials that are environmentally friendly and biodegradable.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Plastic and Cosmetic Surgery, The Second Affiliated Hospital of Army Medical University, Chongqing 400038, China. Electronic address:
The chronic diabetic wounds represented by diabetes foot ulcers (DFUs) are a worldwide challenge. Excessive production of reactive oxygen species (ROS) and persistent inflammation caused by the impaired phenotype switch of macrophages from M1 to M2 during wound healing are the main culprits of non-healing diabetic wounds. Therefore, an injectable DMM/GelMA hydrogel as a promising wound dressing was designed to regulate the mitochondrial metabolism of macrophages via inhibiting succinate dehydrogenase (SDH) activity and to promote macrophage repolarization towards M2 type.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China. Electronic address:
The plastivore insect Tenebrio molitor demonstrates significant potential for the rapid biodegradation and bioremediation of micro(nano)plastics. However, real-time visualization of the digestive degradation and removal of microplastics (MPs) during intestinal transit, along with the associated in vivo intestinal functional responses, remains challenging. Here, we developed second near-infrared (NIR-II) window aggregated-induced emission (AIE) MPs of two sizes (29.
View Article and Find Full Text PDFFront Immunol
January 2025
Leeds Institute of Medical Research, School of Medicine, University of Leeds, St. James University Hospital, Leeds, United Kingdom.
Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!