The contamination of greenhouse vegetable soils with antibiotics and antibiotic resistance genes (ARGs), caused by the application of livestock and poultry manure, is a prominent environmental problem. In this study, the effects of two ecological earthworms (endogeic Metaphire guillelmi and epigeic Eisenia fetida) on the accumulation and transfer of chlortetracycline (CTC) and ARGs in a soil-lettuce system were studied via pot experiments. The results revealed that earthworm application accelerated the removal of the CTC from the soil and lettuce roots and leaves, with the CTC content reducing by 11.7-22.8 %, 15.7-36.1 %, and 8.93-19.6 % compared with that of the control, respectively. Both earthworms significantly reduced the CTC uptake by lettuce roots from the soil (P < 0.05) but did not change the CTC transfer efficiency from the roots to leaves. The high-throughput quantitative PCR results showed that the relative abundance of ARGs in the soil and lettuce roots and leaves decreased by 22.4-27.0 %, 25.1-44.1 %, and 24.4-25.4 %, respectively, with the application of earthworms. Earthworm addition decreased the interspecific bacterial interactions and the relative abundance of mobile genetic elements (MGEs), which helped reduce the dissemination of ARGs. Furthermore, some indigenous soil antibiotic degraders (Pseudomonas, Flavobacterium, Sphingobium, and Microbacterium) were stimulated by the earthworms. The results of redundancy analysis indicated that the bacterial community composition, CTC residues, and MGEs were the main parameters affecting the distribution of ARGs, accounting for 91.1 % of the total distribution. In addition, the bacterial function prediction results showed that the addition of earthworms reduced the abundance of some pathogenic bacteria in the system. Overall, our findings imply that earthworm application can substantially reduce the accumulation and transmission risk of antibiotics and ARGs in soil-lettuce systems, providing a cost-effective soil bioremediation practice for addressing antibiotic and ARGs contamination to guarantee the safety of vegetables and human health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163907DOI Listing

Publication Analysis

Top Keywords

ecological earthworms
8
antibiotic resistance
8
resistance genes
8
lettuce roots
8
mitigation effects
4
effects microbial
4
microbial mechanism
4
mechanism ecological
4
earthworms uptake
4
uptake chlortetracycline
4

Similar Publications

The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.

View Article and Find Full Text PDF

Liquid crystal monomers in soil: Developing priority list based on the proposed soil health indicators.

J Hazard Mater

January 2025

National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:

Liquid crystal monomers (LCMs) are emerging pollutants that have attracted attention recently due to their unique chemical properties and wide applications. However, in-depth research on LCMs' potential risks to soil health remains blank. Therefore, 107 LCMs and nine soil health characterization proteins/enzymes were selected as research objects in this study.

View Article and Find Full Text PDF

A holistic approach for the evaluation of iron nanoparticles on maize plants and earthworms in natural soil.

Chemosphere

January 2025

Sustainability of Natural Resources and Energy Program, Cinvestav-Saltillo, Coahuila, C.P. 25900, Mexico.

There is a debate about the implications of the effect of nanoparticles or nanomaterials on edible plants and soil organisms. Earthworms have been used to evaluate soil quality, reproduction, survival, and other biochemical parameters when organisms are exposed to nanomaterials. Most studies have been performed in laboratory settings, and little has been studied under realistic conditions, especially when earthworms and corn plants share the same natural soil and organic matter space.

View Article and Find Full Text PDF

Pesticides often exist as complex mixtures in soil environments, yet the toxicity of these combinations has not been thoroughly investigated. In light of this, the current study aimed to assess the enzymatic activity and gene expression responses in the earthworm Eisenia fetida when exposed to a mixture of beta-cypermethrin (BCY) and triadimefon (TRI). The findings revealed that co-exposure to BCY and TRI triggered acute synergistic toxicity in E.

View Article and Find Full Text PDF

Unveiling the impact of polystyrene and low-density polyethylene microplastics on arsenic toxicity in earthworms.

J Environ Manage

January 2025

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:

The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!