Introducing a land use-based weight factor in regional health risk assessment of PAHs in soils of an urban agglomeration.

Sci Total Environ

Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, People's Republic of China.

Published: August 2023

The high heterogeneity of land uses in urban areas has led to large spatial variations in the contents and health risks of polycyclic aromatic hydrocarbons (PAHs) in soils. A land use-based health risk assessment (LUHR) model was proposed for soil pollution on a regional scale by introducing a land use-based weight factor, which considered the differences in exposure levels of soil pollutants to receptor populations between land uses. The model was applied to assess the health risk posed by soil PAHs in the rapidly industrializing urban agglomeration of Changsha-Zhuzhou-Xiangtan Urban Agglomeration (CZTUA). The mean concentration of total PAHs (∑PAHs) in CZTUA was 493.2 μg/kg, and their spatial distribution was consistent with emissions from industry and vehicles. The LUHR model suggested the 90th percentile health risk value was 4.63 × 10, which was 4.13 and 1.08 times higher than those of traditional risk assessments that have adopted adults and children as default risk receptors, respectively. The risk maps of LUHRs showed that the ratios of the area exceeding the risk threshold (1 × 10) to the total area were 34.0 %, 5.0 %, 3.8 %, 2.1 %, and 0.2 % in the industrial area, urban green space, roadside, farmland, and forestland, respectively. The LUHR model back-calculated the soil critical values (SCVs) for ∑PAHs under different land uses, resulting in values of 6719, 4566, 3224, and 2750 μg/kg for forestland, farmland, urban green space, and roadside, respectively. Compared with the traditional health risk assessment models, this LUHR model identified high-risk areas and drew risk contours more accurately and precisely by considering both the spatial variances of soil pollution and their exposure levels to different risk receptors. This provides an advanced approach to assessing the health risks of soil pollution on a regional scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.163833DOI Listing

Publication Analysis

Top Keywords

health risk
20
luhr model
16
land use-based
12
risk assessment
12
urban agglomeration
12
soil pollution
12
risk
11
introducing land
8
use-based weight
8
weight factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!