The COVID-19 pandemic is a significant public health threat with unanswered questions regarding the immune system's role in the disease's severity level. Here, based on antibody kinetic data of severe and non-severe COVID-19 patients, topological data analysis (TDA) highlights that severity is not binary. However, there are differences in the shape of antibody responses that further classify COVID-19 patients into non-severe, severe, and intermediate cases of severity. Based on the results of TDA, different mathematical models were developed to represent the dynamics between the different severity groups. The best model was the one with the lowest average value of the Akaike Information Criterion for all groups of patients. Our results suggest that different immune mechanisms drive differences between the severity groups. Further inclusion of different components of the immune system will be central for a holistic way of tackling COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10159681 | PMC |
http://dx.doi.org/10.1016/j.mbs.2023.109011 | DOI Listing |
Nat Commun
January 2025
Toyota Central R&D Labs. Inc.; 41-1, Yokomichi, Nagakute, Aichi, Japan.
We propose a network architecture for electronic skin with an extensive sensor array-crucial for enabling robots to perceive their environment and interact effectively with humans. Fault tolerance is essential for electronic skins on robot exteriors. Although self-healing electronic skins targeting minor damages are studied using material-based approaches, substantial damages such as severe cuts necessitate re-establishing communication pathways, traditionally performed with high-functionality microprocessor sensor nodes.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
School of Software, Taiyuan University of Technology, Taiyuan, China.
Personalized cancer drug treatment is emerging as a frontier issue in modern medical research. Considering the genomic differences among cancer patients, determining the most effective drug treatment plan is a complex and crucial task. In response to these challenges, this study introduces the Adaptive Sparse Graph Contrastive Learning Network (ASGCL), an innovative approach to unraveling latent interactions in the complex context of cancer cell lines and drugs.
View Article and Find Full Text PDFThe Chern number is the core of topological photonics, which is used to describe the topological properties of photonic crystals and other optical systems to realize the functional transmission and the control of photons within materials. However, the calculation process of Chern numbers is complex and time-consuming. To address this issue, we use the deep learning accompanied with Maxwell's equations to predict the Chern number of a two-dimensional photonic crystal with a square lattice in this paper.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China.
Deep learning models have shown promise in diagnosing neurodevelopmental disorders (NDD) like ASD and ADHD. However, many models either use graph neural networks (GNN) to construct single-level brain functional networks (BFNs) or employ spatial convolution filtering for local information extraction from rs-fMRI data, often neglecting high-order features crucial for NDD classification. We introduce a Multi-view High-order Network (MHNet) to capture hierarchical and high-order features from multi-view BFNs derived from rs-fMRI data for NDD prediction.
View Article and Find Full Text PDFmBio
January 2025
Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
Unlabelled: Bacterial typing at whole-genome scales is now feasible owing to decreasing costs in high-throughput sequencing and the recent advances in computation. The unprecedented resolution of whole-genome typing is achieved by genotyping the variable segments of bacterial genomes that can fluctuate significantly in gene content. However, due to the transient and hypervariable nature of many accessory elements, the value of the added resolution in outbreak investigations remains disputed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!