Tuberculosis is a major health issue globally and a leading cause of death due to the infective microorganism Mycobacterium tuberculosis. Treatment of drug resistance tuberculosis requires longer treatment with multiple daily doses of drugs. Unfortunately, these drugs are often associated with poor patient compliance. In this situation, a need has been felt for the less toxic, shorter, and more effective treatment of the infected tuberculosis patients. Current research to develop novel anti-tubercular drugs shows hope for better management of the disease. Research on drug targeting and precise delivery of the old anti-tubercular drugs with the help of nanotechnology is promising for effective treatment. This review has discussed the status currently available treatments for tuberculosis patients infected with Mycobacterium alone or in comorbid conditions like diabetes, HIV and cancer. This review also highlighted the challenges in the current treatment and research on the novel anti-tubercular drugs to prevent multi-drug-resistant tuberculosis. It presents the research highlights on the targeted delivery of anti-tubercular drugs using different nanocarriers for preventing multi-drug resistant tuberculosis. Report has shown the importance and development of the research on nanocarriers mediated anti-tubercular delivery of the drugs to overcome the current challenges in tuberculosis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123018DOI Listing

Publication Analysis

Top Keywords

anti-tubercular drugs
16
tuberculosis
9
tuberculosis treatment
8
effective treatment
8
tuberculosis patients
8
novel anti-tubercular
8
delivery anti-tubercular
8
treatment
7
drugs
7
anti-tubercular
5

Similar Publications

Disruption of the mycobacterial redox homeostasis leads to irreversible stress induction and cell death. Hydroquinone scaffolds, as a new type of redox cycling anti-tuberculosis chemotypes, exhibit potent bactericidal activity against non-replicating, nutrient-deprived phenotypically drug-resistant bacteria. Evidences from microbiological, biochemical, and genetic studies indicate that the redox-driven mode of action relies on the reduction of quinones by type II NADH dehydrogenase (NDH2), generating reactive oxygen species (ROS) of bactericidal level.

View Article and Find Full Text PDF

infections continue to pose a significant global health challenge, particularly due to the rise of multidrug-resistant strains, random mycobacterial mutations, and the complications associated with short-term antibiotic regimens. Currently, five approved drugs target cell wall biosynthesis in . This review provides a comprehensive analysis of these drugs and their molecular mechanisms.

View Article and Find Full Text PDF

A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds.

Med Chem

January 2025

Department of Pharmacy, Division of Research and Innovation, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India.

Introduction: Heterocyclic derivatives, particularly those containing heteroatoms such as oxygen and nitrogen, represent a significant portion of currently marketed drugs. Among these, the aromatic heterocycle 1,3,4-oxadiazole, characterized by an N=C=O-linkage, stands out due to its remarkable biological activities. These activities include anti-inflammatory, anti-cancer, antioxidant, anti-tubercular, antiviral, anti-diabetic, and antibacterial effects.

View Article and Find Full Text PDF

Recent advancements in the quest of benzazoles as anti-Mycobacterium tuberculosis agents.

Bioorg Chem

February 2025

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab 160 062, India; School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700 032, India. Electronic address:

Tuberculosis (TB) remains a global health challenge, claiming numerous lives each year, despite recent advancements in drug discovery and treatment strategies. Current TB treatment typically involves long-duration chemotherapy regimens that are often accompanied by adverse effects. The introduction of new anti-TB drugs, such as Bedaquiline, Delamanid, and Pretomanid, offers hope for more effective treatment, although challenges persist keeping the quest to find new anti-TB chemotypes an incessant exercise of medicinal chemists.

View Article and Find Full Text PDF

Exploration of triazole derivatives, SAR profiles, and clinical pipeline against Mycobacterium tuberculosis.

Bioorg Chem

February 2025

Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India. Electronic address:

Tuberculosis is a highly infectious disease and it is a global threat in particular affecting people from developing countries. It is thought that nearly one-third of the global population lives with this causative bacterium in its dominant form. The spread of HIV and the development of resistance to both multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) aggravates the spread of the disease and needs novel drugs which combat this disease effectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!