PD-1/PD-L1 blockade has achieved substantial clinical results in cancer treatment. However, the expression of other immune checkpoints leads to resistance and hinders the efficacy of PD-1/PD-L1 blockade. T cell immunoglobulin and mucin domain 3 (TIM-3), a non-redundant immune checkpoint, synergizes with PD-1 to mediate T cell dysfunction in tumor microenvironment. Development of small molecules targeting TIM-3 is a promising strategy for cancer immunotherapy. Here, to identify small molecule inhibitors targeting TIM-3, the docking pocket in TIM-3 was analyzed by Molecular Operating Environment (MOE) and the Chemdiv compound database was screened. The small molecule SMI402 could bind to TIM-3 with high affinity and prevent the ligation of PtdSer, HMGB1, and CEACAM1. SMI402 reinvigorated T cell function in vitro. In the MC38-bearing mouse model, SMI402 inhibited tumor growth by increasing CD8 T and natural killing (NK) cells infiltration at the tumor site, as well as restoring the function of CD8 T and NK cells. In conclusions, the small molecule SMI402 shows promise as a leading compound which targets TIM-3 for cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2023.115583 | DOI Listing |
J Transl Med
January 2025
Comprehensive Cancer Center, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, 210008, China.
Objectives: GPC3 has been recognized as a promising target for immunotherapy in hepatocellular carcinoma (HCC). However, the GPC3-targeted immunotherapies have shown limited therapeutic efficacy. The use of anti-PD-1/PD-L1 monoclonal antibodies in HCC treatment is considerably constrained.
View Article and Find Full Text PDFOncotarget
January 2025
Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Background: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University, 66421 Homburg, Germany.
Head and neck squamous cell carcinomas (HNSCC) have an overall poor prognosis, especially in locally advanced and metastatic stages. In most cases, multimodal therapeutic approaches are required and show only limited cure rates with a high risk of tumor recurrence. Anti-PD-1 antibody treatment was recently approved for recurrent and metastatic cases but to date, response rates remain lower than 25%.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China; Key Laboratory of Tooth Development and Bone Remodeling of Jilin Province, School and Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!