Biological characterization of microwave based synthesized ZnO and Ce doped ZnO nanoflowers impeded chitosan matrix with enhanced antioxidant and anti-diabetic properties.

Int J Biol Macromol

Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef City, Egypt; Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt. Electronic address:

Published: July 2023

The chitosan matrix was used as a substrate for ZnO nanoflowers (ZnO/CH) and Ce-doped ZnO nanoflowers (Ce-ZnO/CH) by microwave-induced hydrothermal synthesis processes. The obtained hybrid structures were assessed as enhanced antioxidant and antidiabetic agents considering the synergetic effect of the different components. The integration of chitosan and cerium induced significantly the biological activity of ZnO flower-like particles. Ce-doped ZnO nano-flowers show higher activities than both ZnO nanoflowers and ZnO/CH composite reflecting the strong effect of surface electrons that were formed by the doping process as compared to the high interactive interface of the chitosan substrate. As an antioxidant the synthetic Ce-ZnO/CH composite achieved remarkable scavenging efficiencies for DPPH (92.4 ± 1.33 %), nitric oxide (95.2 ± 1.81 %), ABTS (90.4 ± 1.64 %), and superoxide (52.8 ± 1.22 %) radicals which are significantly higher values than Ascorbic acid as standard and the commercially used ZnO nanoparticles. Also, its antidiabetic efficiency enhanced greatly achieving strong inhibition effects on porcine α-amylase (93.6 ± 1.66 %), crude α-amylase (88.7 ± 1.82 %), pancreatic α-glucosidase (98.7 ± 1.26 %), crude intestinal α-glucosidase (96.8 ± 1.16 %), and amyloglucosidase (97.2 ± 1.72 %) enzymes. The recognized inhibition percentages are notably higher than the determined percentages using miglitol drug and slightly higher than acarbose. This recommends the Ce-ZnO/CH composite as a potential antidiabetic and antioxidant agent compared with the high cost and the reported side effects of the commonly used chemical drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124713DOI Listing

Publication Analysis

Top Keywords

zno nanoflowers
16
zno
8
chitosan matrix
8
enhanced antioxidant
8
nanoflowers zno/ch
8
ce-doped zno
8
compared high
8
ce-zno/ch composite
8
biological characterization
4
characterization microwave
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!