Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin. The nanoparticles were characterized by size, zeta potential and encapsulation efficiency (EE%). And they had a particle size of 460 ± 11.0 nm, PDI of 0.2 ± 0.021, zeta potential of 30.6 ± 0.48 mV, and an EE% of 52.5 %. Cytotoxicity assays were performed for HT-29 cell lines. It was observed that ACG and nanoparticles did not have a significant effect on cell viability, verifying their biocompatibility. Hypoglycemic effects of the formulation were analyzed in vivo, noting that the nanoparticles reduced blood glucose by 51.0 % of baseline levels after 12 h, not inducing signs of toxicity or death. Biochemical and hematological profiles were not clinically modified. Histological study indicated no signs of toxicity. Results showed that the nanostructured system presented itself as a potential vehicle for oral insulin release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.124737DOI Listing

Publication Analysis

Top Keywords

acetylated cashew
8
oral administration
8
oral insulin
8
zeta potential
8
signs toxicity
8
insulin-loaded nanoparticles
4
nanoparticles based
4
based acetylated
4
cashew gum/chitosan
4
gum/chitosan complexes
4

Similar Publications

Anacardic acid (AA) was first detected in the shells of cashew nuts, Anacardium occidentale, and is known to possess inhibitory activity against acetyltransferases. Recently, several anacardic acid derivatives (AAds) were isolated from the wild fungus, Tyromyces fissilis, which has been reported as xanthine oxidase inhibitors. In the present study, we investigated whether nine AAds function as acetyltransferase inhibitors.

View Article and Find Full Text PDF

Insulin is one of the most important drugs in the clinical treatment of diabetes. There is growing interest in oral insulin administration as it mimics the physiological pathway and potentially reduces side effects associated with subcutaneous injection. In this study, a nanoparticulate system was developed using acetylated cashew gum (ACG) and chitosan by the polyelectrolyte complexation method, for oral administration of insulin.

View Article and Find Full Text PDF

The aim of the present study was to examine the nutritional (fat, fatty acids, minerals, sugars) and bioactive compounds (polyphenols, tocochromanols, triterpene) and their influence on anti-diabetic (pancreatic α-amylase and intestinal α-glucosidase), anti-obesity (pancreatic lipase) and anti-cholinergic (AChE and BuChE) inhibitory activity of 8 different popular nuts-pecan, pine, hazelnuts, pistachio, almonds, cashew, walnuts, and macadamia. The total content of phenolic compounds in nuts ranged from 432.9 (walnuts) to 5.

View Article and Find Full Text PDF

Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium guajava L.) in nanostructured systems: Antioxidant and antitumor capacity.

Int J Biol Macromol

November 2021

Programa de Pós-Graduação em Biotecnologia, RENORBIO, Brazil; Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil. Electronic address:

Industrial application of lycopene is limited due to its chemical instability and low bioavailability. This study proposes the development of fucan-coated acetylated cashew gum nanoparticles (NFGa) and acetylated cashew gum nanoparticles (NGa) for incorporation of the lycopene-rich extract from red guava (LEG). Size, polydispersity, zeta potential, nanoparticles concentration, encapsulation efficiency, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to characterize nanoparticles.

View Article and Find Full Text PDF

Polysaccharide nanoparticles with potential to stabilize Pickering emulsions have been recently object of many research. Acetylated cashew gum with different degrees of substitution has been used in this work, in the pursuit of obtaining stable Pickering emulsions. Acetylated cashew gum was characterized by infrared and nuclear resonance spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!