Chronic wounds frequently become infected with bacterial biofilms which respond poorly to antibiotic therapy. Aminoglycoside antibiotics are ineffective at treating deep-seated wound infections due to poor drug penetration, poor drug uptake into persister cells, and widespread antibiotic resistance. In this study, we combat the two major barriers to successful aminoglycoside treatment against a biofilm-infected wound: limited antibiotic uptake and limited biofilm penetration. To combat the limited antibiotic uptake, we employ palmitoleic acid, a host-produced monounsaturated fatty acid that perturbs the membrane of gram-positive pathogens and induces gentamicin uptake. This novel drug combination overcomes gentamicin tolerance and resistance in multiple gram-positive wound pathogens. To combat biofilm penetration, we examined the ability of sonobactericide, a non-invasive ultrasound-mediated-drug delivery technology to improve antibiotic efficacy using an in vivo biofilm model. This dual approach dramatically improved antibiotic efficacy against a methicillin-resistant Staphylococcus aureus (MRSA) wound infection in diabetic mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10198964PMC
http://dx.doi.org/10.1016/j.chembiol.2023.04.009DOI Listing

Publication Analysis

Top Keywords

staphylococcus aureus
8
wound infection
8
poor drug
8
limited antibiotic
8
antibiotic uptake
8
biofilm penetration
8
antibiotic efficacy
8
antibiotic
6
wound
5
overcoming biological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!