Overexpression of bla due to a strong promoter in the class 1 integron contributes to decreased ceftazidime-avibactam susceptibility in carbapenem-resistant Pseudomonas aeruginosa ST235.

Drug Resist Updat

Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China. Electronic address:

Published: July 2023

Sequence type 235 (ST235) Pseudomonas aeruginosa, harboring so-called international, high-risk, or widespread clones, is associated with relatively high morbidity and mortality, partly due to multiantibiotic and high-level antibiotic resistance. Treatment of infections caused by such strains with ceftazidime-avibactam (CZA) is often successful. However, CZA resistance in carbapenem-resistant P. aeruginosa (CRPA) strains has been consistently reported with the increasing use of this drug. Likewise, we identified thirty-seven CZA-resistant ST235 P. aeruginosa strains from among 872 CRPA isolates. A total of 10.8% of the ST235 CRPA strains were resistant to CZA. Site-directed mutagenesis, cloning, expression, and whole-genome sequencing analysis revealed that overexpression of bla, which was carried in a class 1 integron of the complex transposon Tn6584, occurred due to a strong promoter, contributing to CZA resistance. Moreover, such overexpression of bla combined with an efflux pump resulted in high-level resistance to CZA, considerably reducing the therapeutic options available for treating infections caused by ST235 CRPA. Considering the widespread presence of ST235 P. aeruginosa strains, clinicians should be aware of the risk of CZA resistance development in high-risk ST235 P. aeruginosa. Surveillance initiatives for preventing further dissemination of high-risk ST235 CRPA isolates with CZA resistance are essential.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drup.2023.100973DOI Listing

Publication Analysis

Top Keywords

cza resistance
16
overexpression bla
12
st235 aeruginosa
12
st235 crpa
12
strong promoter
8
class integron
8
pseudomonas aeruginosa
8
st235
8
infections caused
8
crpa strains
8

Similar Publications

Klebsiella pneumoniae sequence type 258 (ST258) is the main cause of the global spread of KPC and a significant public health problem. In 2015, ceftazidime/avibactam (CZA) was introduced as a therapeutic alternative and since it has contributed to the development of new KPC variants. Here we present the identification of two consecutive isolations of K.

View Article and Find Full Text PDF

Global phylogeography and genetic characterization of carbapenem and ceftazidime-avibactam resistant KPC-33-producing Pseudomonas aeruginosa.

NPJ Antimicrob Resist

January 2025

Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.

Ceftazidime-avibactam (CZA) is currently one of the last resorts used to treat infections caused by carbapenem-resistant Enterobacteriaceae and Pseudomonas aeruginosa. However, KPC variants have become the main mechanism mediating CZA resistance in KPC-producing gram-negative bacteria after increasing the application of CZA. Our previous study revealed that CZA-resistant KPC-33 had emerged in carbapenem-resistant P.

View Article and Find Full Text PDF

National Multicenter Study on the Prevalence of Carbapenemase-Producing Enterobacteriaceae in the Post-COVID-19 Era in Argentina: The RECAPT-AR Study.

Antibiotics (Basel)

November 2024

Servicio Antimicrobianos, National Reference Laboratory in Antimicrobial Resistant, National Institute of Infectious Diseases (INEI), Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) "Dr. Carlos G Malbrán", Ave. Velez Sarsfield 563, Buenos Aires City 1281, Argentina.

Unlabelled: The COVID-19 pandemic has exacerbated the global antimicrobial resistance (AMR) crisis. Consequently, it is more urgent than ever to prioritize AMR containment and support countries in improving the detection, characterization, and rapid response to emerging AMR threats. We conducted a prospective, multicenter study to assess the prevalence of carbapenemase-producing Enterobacterales in infectious processes in Argentina during the post-COVID-19 pandemic period and explore therapeutic alternatives for their treatment (RECAPT-AR study).

View Article and Find Full Text PDF

Synergistic effects of colistin-rifampin-based triple antimicrobial combination therapy against Carbapenem-resistant Pseudomonas aeruginosa: a time-kill assay.

J Antimicrob Chemother

December 2024

Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, South Korea.

Background: Our research aimed to investigate the potential of in vitro triple antimicrobial synergism against carbapenem-resistant Pseudomonas aeruginosa (CRPA) as a strategy to overcome antimicrobial resistance.

Methods: We used 12 CRPA blood isolates stocked in the Asian Bacterial Bank between 2016 and 2018. All isolates were tested by multi-locus sequencing and carbapenemase multiplex PCR.

View Article and Find Full Text PDF

Ceftazidime-avibactam (CZA) is one of the effective antibiotics used for the treatment of carbapenem-resistant (CRKP) infections, but its resistance rate has increased recently. Previous studies have focused on the mechanisms of CZA resistance, while its heteroresistance in CRKP remains poorly understood. This study aimed to investigate the characteristics and mechanisms of CZA heteroresistance in CRKP isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!