Priming therapy by targeting enhancer-initiated pathways in patient-derived pancreatic cancer cells.

EBioMedicine

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Parc Scientifique et Technologique de Luminy, Aix-Marseille Université and Institut Paoli-Calmettes, Marseille, France; Hospital de Alta Complejidad El Cruce, Florencio Varela, BA, Argentina; University Arturo Jauretche, Florencio Varela, BA, Argentina. Electronic address:

Published: June 2023

Background: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors.

Methods: We tested a targeted library of ten epidrugs targeting regulators of enhancers and super-enhancers on reprogramming gene expression networks in seventeen patient-derived primary pancreatic cancer cell cultures (PDPCCs), of both basal and classical subtypes. We subsequently evaluated the ability of these epidrugs to sensitize pancreatic cancer cells to five chemotherapeutic drugs that are clinically used for this malignancy.

Findings: To comprehend the impact of epidrug priming at the molecular level, we evaluated the effect of each epidrugs at the transcriptomic level of PDPCCs. The activating epidrugs showed a higher number of upregulated genes than the repressive epidrugs (χ test p-value <0.01). Furthermore, we developed a classifier using the baseline transcriptome of epidrug-primed-chemosensitized PDPCCs to predict the best epidrug-priming regime to a given chemotherapy. Six signatures with a significant association with the chemosensitization centroid (R ≤ -0.80; p-value < 0.01) were identified and validated in a subset of PDPCCs.

Interpretation: We conclude that targeting enhancer-initiated pathways in patient-derived primary cells, represents a promising approach for developing new therapies for human pancreatic cancer.

Funding: This work was supported by INCa (Grants number 2018-078 to ND and 2018- 079 to JI), Canceropole PACA (ND), Amidex Foundation (ND), and INSERM (JI).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189188PMC
http://dx.doi.org/10.1016/j.ebiom.2023.104602DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
cancer cells
8
gene expression
8
epidrugs
6
priming therapy
4
therapy targeting
4
targeting enhancer-initiated
4
enhancer-initiated pathways
4
pathways patient-derived
4
pancreatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!