AI Article Synopsis

  • The study aimed to explore how Parkinson's disease (PD) affects gastrointestinal (GI) function, using a mouse model induced by MPTP to simulate the disease.
  • Key findings showed that PD mice had GI motility issues linked to loss of enteric neurons, higher levels of phosphorylated α-synuclein (p-α-syn), and inflammation, with a significant connection to Toll-like receptor 2 (TLR2).
  • By inhibiting TLR2, researchers observed improved GI function and reduced inflammation, suggesting that targeting TLR2 could be a potential therapeutic approach for managing GI problems in PD.

Article Abstract

The study was designed to investigate the pathogenesis of gastrointestinal (GI) impairment in Parkinson's disease (PD). We utilized 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg) and probenecid (250 mg/kg) to prepare a PD mice model. MPTP modeling was first confirmed. GI motility was measured using stool collection test and enteric plexus loss was also detected. Intestinal phosphorylated α-synuclein (p-α-syn), inflammation, and S100 were assessed using western blotting. Association between Toll-like receptor 2(TLR2) and GI function was validated by Pearson's correlations. Immunofluorescence was applied to show co-localizations of intestinal p-α-syn, inflammation, and Schwann cells (SCs). CU-CPT22 (3 mg/kg, a TLR1/TLR2 inhibitor) was adopted then. Success in modeling, damaged GI neuron and function, and activated intestinal p-α-syn, inflammation, and SCs responses were observed in MPTP group, with TLR2 related to GI damage. Increased p-α-syn and inflammatory factors were shown in SCs of myenteron for MPTP mice. Recovered fecal water content and depression of inflammation, p-α-syn deposition, and SCs activity were noticed after TLR2 suppression. The study investigates a novel mechanism of PD GI autonomic dysfunction, demonstrating that p-α-syn accumulation and TLR2 signaling of SCs were involved in disrupted gut homeostasis and treatments targeting TLR2-mediated pathway might be a possible therapy for PD.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-023-03345-4DOI Listing

Publication Analysis

Top Keywords

p-α-syn inflammation
12
p-α-syn accumulation
8
inflammation schwann
8
schwann cells
8
parkinson's disease
8
intestinal p-α-syn
8
p-α-syn
7
inflammation
5
scs
5
involvement abnormal
4

Similar Publications

Avian Reovirus: From Molecular Biology to Pathogenesis and Control.

Viruses

December 2024

Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA 30605, USA.

Avian reoviruses (ARVs) represent a significant economic burden on the poultry industry due to their widespread prevalence and potential pathogenicity. These viruses, capable of infecting a diverse range of avian species, can lead to a variety of clinical manifestations, most notably tenosynovitis/arthritis. While many ARV strains are asymptomatic, pathogenic variants can cause severe inflammation and tissue damage in organs such as the tendons, heart, and liver.

View Article and Find Full Text PDF

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.

View Article and Find Full Text PDF

Cytomegalovirus Biology Viewed Through a Cell Death Suppression Lens.

Viruses

November 2024

Department of Microbiology & Immunology, Stanford Medical School, Stanford University, Stanford, CA 94305, USA.

Cytomegaloviruses, species-specific members of the betaherpesviruses, encode an impressive array of immune evasion strategies committed to the manipulation of the host immune system enabling these viruses to remain for life in a stand-off with host innate and adaptive immune mechanisms. Even though they are species-restricted, cytomegaloviruses are distributed across a wide range of different mammalian species in which they cause systemic infection involving many different cell types. Regulated, or programmed cell death has a recognized potential to eliminate infected cells prior to completion of viral replication and release of progeny.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!