AI Article Synopsis

  • The study examines the relationship between genetic and phenotypic variations in European crabapple (Malus sylvestris), focusing on how these variations relate to different environmental conditions across Europe.
  • Researchers analyzed growth rates and carbon uptake traits of seedlings while also assessing genetic differences through microsatellite loci and methods to understand population divergence.
  • Findings revealed ongoing gene flow from domesticated apples into wild populations and significant trait variations among populations; however, historical climate adaptation played a more crucial role than current climatic isolation in shaping genetic differences.

Article Abstract

Background And Aims: Studying the relationship between phenotypic and genetic variation in populations distributed across environmental gradients can help us to understand the ecological and evolutionary processes involved in population divergence. We investigated the patterns of genetic and phenotypic diversity in the European crabapple, Malus sylvestris, a wild relative of the cultivated apple (Malus domestica) that occurs naturally across Europe in areas subjected to different climatic conditions, to test for divergence among populations.

Methods: Growth rates and traits related to carbon uptake in seedlings collected across Europe were measured in controlled conditions and associated with the genetic status of the seedlings, which was assessed using 13 microsatellite loci and the Bayesian clustering method. Isolation-by-distance, isolation-by-climate and isolation-by-adaptation patterns, which can explain genetic and phenotypic differentiation among M. sylvestris populations, were also tested.

Key Results: A total of 11.6 % of seedlings were introgressed by M. domestica, indicating that crop-wild gene flow is ongoing in Europe. The remaining seedlings (88.4 %) belonged to seven M. sylvestris populations. Significant phenotypic trait variation among M. sylvestris populations was observed. We did not observe significant isolation by adaptation; however, the significant association between genetic variation and the climate during the Last Glacial Maximum suggests that there has been local adaptation of M. sylvestris to past climates.

Conclusions: This study provides insight into the phenotypic and genetic differentiation among populations of a wild relative of the cultivated apple. This might help us to make better use of its diversity and provide options for mitigating the impact of climate change on the cultivated apple through breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10332392PMC
http://dx.doi.org/10.1093/aob/mcad061DOI Listing

Publication Analysis

Top Keywords

cultivated apple
16
phenotypic genetic
12
genetic variation
12
wild relative
12
relative cultivated
12
sylvestris populations
12
ecological evolutionary
8
european crabapple
8
genetic phenotypic
8
genetic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!