L-Fucose is involved in human-gut microbiome interactions.

Appl Microbiol Biotechnol

Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.

Published: June 2023

L-Fucose is one of the key metabolites in human-gut microbiome interactions. It is continuously synthesized by humans in the form of fucosylated glycans and fucosyl-oligosaccharides and delivered into the gut throughout their lifetime. Gut microorganisms metabolize L-fucose and produce short-chain fatty acids, which are absorbed by epithelial cells and used as energy sources or signaling molecules. Recent studies have revealed that the carbon flux in L-fucose metabolism by gut microorganisms is distinct from that in other sugar metabolisms because of cofactor imbalance and low efficiencies in energy synthesis of L-fucose metabolism. The large amounts of short-chain fatty acids produced during microbial L-fucose metabolism are used by epithelial cells to recover most of the energy used up during L-fucose synthesis. In this review, we present a detailed overview of microbial L-fucose metabolism and a potential solution for disease treatment and prevention using genetically engineered probiotics that modulate fucose metabolism. Our review contributes to the understanding of human-gut microbiome interactions through L-fucose metabolism. KEY POINTS: • Fucose-metabolizing microorganisms produce large amounts of short-chain fatty acids • Fucose metabolism differs from other sugar metabolisms by cofactor imbalance • Modulating fucose metabolism is the key to control host-gut microbiome interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-023-12527-yDOI Listing

Publication Analysis

Top Keywords

l-fucose metabolism
20
microbiome interactions
16
human-gut microbiome
12
short-chain fatty
12
fatty acids
12
fucose metabolism
12
l-fucose
9
interactions l-fucose
8
gut microorganisms
8
epithelial cells
8

Similar Publications

Lectins that can recognize and bind to carbohydrates and glycoconjugates are at the epicentre of research owing to their prospective applications. In the present study, a D-fucose binding lectin from the serum of darkling beetle, Zophobas morio was purified and their mitogenic potential over human B-cells was evaluated. Biochemical assays on the preliminary characterization revealed the occurrence of single D-fucose binding lectin.

View Article and Find Full Text PDF

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) and has been approved to be commercially added to infant formula. Microbial synthesis from exogenous lactose via metabolic engineering is currently the major approach to production of 2'-FL. Replacement of lactose with cheaper sugars such as glucose and sucrose has been studied to reduce the production costs.

View Article and Find Full Text PDF

Marine bacteria play important roles in the degradation and recycling of algal polysaccharides. However, the marine bacteria involved in fucoidan degradation and their degradation pathways remain poorly understood. Here, we report the complete genome sequence of Isoptericola halotolerans SM2308, isolated from a brown algal sample collected from an intertidal zone of the Yellow Sea in China.

View Article and Find Full Text PDF

Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium.

Commun Biol

January 2025

Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.

Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides.

View Article and Find Full Text PDF

Osteoporosis (OP) is a prevalent metabolic bone disease globally. Currently, the development of Traditional Chinese Medicine (TCM) resources to unblock joints, strengthen bones, and enhance muscle function to regulate anti-osteogenic and anabolic metabolism and thus reshape intraosseous homeostasis was an effective way to alleviate OP. The F-E-D formula, comprising Fructus Psoraleae, Eucommia, and Drynariae Rhizoma, has shown efficacy in treating OP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!